78 research outputs found

    Solar Wind and its Evolution

    Get PDF
    By using our previous results of magnetohydrodynamical simulations for the solar wind from open flux tubes, I discuss how the solar wind in the past is different from the current solar wind. The simulations are performed in fixed one-dimensional super-radially open magnetic flux tubes by inputing various types of fluctuations from the photosphere, which automatically determines solar wind properties in a forward manner. The three important parameters which determine physical properties of the solar wind are surface fluctuation, magnetic field strengths, and the configuration of magnetic flux tubes. Adjusting these parameters to the sun at earlier times in a qualitative sense, I infer that the quasi-steady-state component of the solar wind in the past was denser and slightly slower if the effect of the magneto-centrifugal force is not significant. I also discuss effects of magneto-centrifugal force and roles of coronal mass ejections.Comment: 6 pages, 1 figure, Earth, Planets, & Space in press (based on 5th Alfven Conference) correction of discussion on a related pape

    LEMUR: Large European Module for solar Ultraviolet Research. European contribution to JAXA's Solar-C mission

    Get PDF
    Understanding the solar outer atmosphere requires concerted, simultaneous solar observations from the visible to the vacuum ultraviolet (VUV) and soft X-rays, at high spatial resolution (between 0.1" and 0.3"), at high temporal resolution (on the order of 10 s, i.e., the time scale of chromospheric dynamics), with a wide temperature coverage (0.01 MK to 20 MK, from the chromosphere to the flaring corona), and the capability of measuring magnetic fields through spectropolarimetry at visible and near-infrared wavelengths. Simultaneous spectroscopic measurements sampling the entire temperature range are particularly important. These requirements are fulfilled by the Japanese Solar-C mission (Plan B), composed of a spacecraft in a geosynchronous orbit with a payload providing a significant improvement of imaging and spectropolarimetric capabilities in the UV, visible, and near-infrared with respect to what is available today and foreseen in the near future. The Large European Module for solar Ultraviolet Research (LEMUR), described in this paper, is a large VUV telescope feeding a scientific payload of high-resolution imaging spectrographs and cameras. LEMUR consists of two major components: a VUV solar telescope with a 30 cm diameter mirror and a focal length of 3.6 m, and a focal-plane package composed of VUV spectrometers covering six carefully chosen wavelength ranges between 17 and 127 nm. The LEMUR slit covers 280" on the Sun with 0.14" per pixel sampling. In addition, LEMUR is capable of measuring mass flows velocities (line shifts) down to 2 km/s or better. LEMUR has been proposed to ESA as the European contribution to the Solar C mission.Comment: 35 pages, 14 figures. To appear on Experimental Astronom

    Dimensionality-driven insulator–metal transition in A-site excess non-stoichiometric perovskites

    Get PDF
    Coaxing correlated materials to the proximity of the insulator–metal transition region, where electronic wavefunctions transform from localized to itinerant, is currently the subject of intensive research because of the hopes it raises for technological applications and also for its fundamental scientific significance. In general, this tuning is achieved by either chemical doping to introduce charge carriers, or external stimuli to lower the ratio of Coulomb repulsion to bandwidth. In this study, we combine experiment and theory to show that the transition from well-localized insulating states to metallicity in a Ruddlesden-Popper series, La0.5Srn+1−0.5TinO3n+1, is driven by intercalating an intrinsically insulating SrTiO3 unit, in structural terms, by dimensionality n. This unconventional strategy, which can be understood upon a complex interplay between electron–phonon coupling and electron correlations, opens up a new avenue to obtain metallicity or even superconductivity in oxide superlattices that are normally expected to be insulators

    Lacrimal Hypofunction as a New Mechanism of Dry Eye in Visual Display Terminal Users

    Get PDF
    BACKGROUND: Dry eye has shown a marked increase due to visual display terminal (VDT) use. It remains unclear whether reduced blinking while focusing can have a direct deleterious impact on the lacrimal gland function. To address this issue that potentially affects the life quality, we conducted a large-scale epidemiological study of VDT users and an animal study. METHODOLOGY/PRINCIPAL FINDINGS: Cross sectional survey carried out in Japan. A total of 1025 office workers who use VDT were enrolled. The association between VDT work duration and changes in tear film status, precorneal tear stability, lipid layer status and tear secretion were analyzed. For the animal model study, the rat VDT user model, placing rats onto a balance swing in combination with exposure to an evaporative environment was used to analyze lacrimal gland function. There was no positive relationship between VDT working duration and change in tear film stability and lipid layer status. The odds ratio for decrease in Schirmer score, index of tear secretion, were significantly increased with VDT working year (P = 0.012) and time (P = 0.005). The rat VDT user model, showed chronic reduction of tear secretion and was accompanied by an impairment of the lacrimal gland function and morphology. This dysfunction was recovered when rats were moved to resting conditions without the swing. CONCLUSIONS/SIGNIFICANCE: These data suggest that lacrimal gland hypofunction is associated with VDT use and may be a critical mechanism for VDT-associated dry eye. We believe this to be the first mechanistic link to the pathogenesis of dry eye in office workers

    The Human Endogenous Circadian System Causes Greatest Platelet Activation during the Biological Morning Independent of Behaviors

    Get PDF
    Platelets are involved in the thromboses that are central to myocardial infarctions and ischemic strokes. Such adverse cardiovascular events have day/night patterns with peaks in the morning (~9 AM), potentially related to endogenous circadian clock control of platelet activation. The objective was to test if the human endogenous circadian system influences (1) platelet function and (2) platelet response to standardized behavioral stressors. We also aimed to compare the magnitude of any effects on platelet function caused by the circadian system with that caused by varied standardized behavioral stressors, including mental arithmetic, passive postural tilt and mild cycling exercise.We studied 12 healthy adults (6 female) who lived in individual laboratory suites in dim light for 240 h, with all behaviors scheduled on a 20-h recurring cycle to permit assessment of endogenous circadian function independent from environmental and behavioral effects including the sleep/wake cycle. Circadian phase was assessed from core body temperature. There were highly significant endogenous circadian rhythms in platelet surface activated glycoprotein (GP) IIb-IIIa, GPIb and P-selectin (6-17% peak-trough amplitudes; p ≤ 0.01). These circadian peaks occurred at a circadian phase corresponding to 8-9 AM. Platelet count, ATP release, aggregability, and plasma epinephrine also had significant circadian rhythms but with later peaks (corresponding to 3-8 PM). The circadian effects on the platelet activation markers were always larger than that of any of the three behavioral stressors.These data demonstrate robust effects of the endogenous circadian system on platelet activation in humans--independent of the sleep/wake cycle, other behavioral influences and the environment. The 9 AM timing of the circadian peaks of the three platelet surface markers, including platelet surface activated GPIIb-IIIa, the final common pathway of platelet aggregation, suggests that endogenous circadian influences on platelet function could contribute to the morning peak in adverse cardiovascular events as seen in many epidemiological studies

    Tunable metal-insulator transition in double-layer graphene heterostructures

    Full text link
    We report a double-layer electronic system made of two closely-spaced but electrically isolated graphene monolayers sandwiched in boron nitride. For large carrier densities in one of the layers, the adjacent layer no longer exhibits a minimum metallic conductivity at the neutrality point, and its resistivity diverges at low temperatures. This divergence can be suppressed by magnetic field or by reducing the carrier density in the adjacent layer. We believe that the observed localization is intrinsic for neutral graphene with generic disorder if metallic electron-hole puddles are screened out

    Pervasive Cryptic Epistasis in Molecular Evolution

    Get PDF
    The functional effects of most amino acid replacements accumulated during molecular evolution are unknown, because most are not observed naturally and the possible combinations are too numerous. We created 168 single mutations in wild-type Escherichia coli isopropymalate dehydrogenase (IMDH) that match the differences found in wild-type Pseudomonas aeruginosa IMDH. 104 mutant enzymes performed similarly to E. coli wild-type IMDH, one was functionally enhanced, and 63 were functionally compromised. The transition from E. coli IMDH, or an ancestral form, to the functional wild-type P. aeruginosa IMDH requires extensive epistasis to ameliorate the combined effects of the deleterious mutations. This result stands in marked contrast with a basic assumption of molecular phylogenetics, that sites in sequences evolve independently of each other. Residues that affect function are scattered haphazardly throughout the IMDH structure. We screened for compensatory mutations at three sites, all of which lie near the active site and all of which are among the least active mutants. No compensatory mutations were found at two sites indicating that a single site may engage in compound epistatic interactions. One complete and three partial compensatory mutations of the third site are remote and lie in a different domain. This demonstrates that epistatic interactions can occur between distant (>20Å) sites. Phylogenetic analysis shows that incompatible mutations were fixed in different lineages

    An Antimicrobial Peptide Regulates Tumor-Associated Macrophage Trafficking via the Chemokine Receptor CCR2, a Model for Tumorigenesis

    Get PDF
    Tumor-associated macrophages (TAMs) constitute a significant part of infiltrating inflammatory cells that are frequently correlated with progression and poor prognosis of a variety of cancers. Tumor cell-produced human β-defensin-3 (hBD-3) has been associated with TAM trafficking in oral cancer; however, its involvement in tumor-related inflammatory processes remains largely unknown., applying a cross-desensitization strategy of CCR2 and its pharmacological inhibitor (RS102895), respectively, was also carried out. outcome and demonstrates the importance of the innate immune system in the development of tumors
    corecore