2,156 research outputs found
Effects of intermediate scales on renormalization group running of fermion observables in an SO(10) model
In the context of non-supersymmetric SO(10) models, we analyze the
renormalization group equations for the fermions (including neutrinos) from the
GUT energy scale down to the electroweak energy scale, explicitly taking into
account the effects of an intermediate energy scale induced by a Pati--Salam
gauge group. To determine the renormalization group running, we use a numerical
minimization procedure based on a nested sampling algorithm that randomly
generates the values of 19 model parameters at the GUT scale, evolves them, and
finally constructs the values of the physical observables and compares them to
the existing experimental data at the electroweak scale. We show that the
evolved fermion masses and mixings present sizable deviations from the values
obtained without including the effects of the intermediate scale.Comment: Comments: 20 pages, 3 figures. Final version published in JHE
Neutral Gauge Boson Contributions to the Dimuon Charge Asymmetry in B Decays
Recently, the D0 Collaboration measured the CP-violating like-sign dimuon
charge asymmetry in neutral B decays, finding a 3.2sigma difference from the
standard-model (SM) prediction. A non-SM charge asymmetry a_sl^s suggests a
new-physics (NP) contribution to Bs-Bsbar mixing. In this case, in order to
explain the measured value of a_sl^s within its 1sigma range, NP must be
present in Gamma_12^s, the absorptive part of the mixing. In this paper, we
examine whether such an explanation is possible in models with flavor-changing
Z (ZFCNC) or Z' (Z'FCNC) gauge bosons. The models must also reproduce the
measured values of the indirect CP asymmetry S_psi-phi in Bs -> J/psi phi, and
Delta Gamma_s, the Bs-Bsbar width difference. We find that the ZFCNC model
cannot reproduce the present measured values of S_psi-phi and a_sl^s within
their 1sigma ranges. On the other hand, in the Z'FCNC model, the values of all
three observables can be simultaneously reproduced.Comment: 18 pages, 7 figures, JHEP format. Some ZFCNC equations corrected,
ZFCNC analysis redone, references added, conclusions unchange
Evolution of spiral and scroll waves of excitation in a mathematical model of ischaemic border zone
Abnormal electrical activity from the boundaries of ischemic cardiac tissue
is recognized as one of the major causes in generation of ischemia-reperfusion
arrhythmias. Here we present theoretical analysis of the waves of electrical
activity that can rise on the boundary of cardiac cell network upon its
recovery from ischaemia-like conditions. The main factors included in our
analysis are macroscopic gradients of the cell-to-cell coupling and cell
excitability and microscopic heterogeneity of individual cells. The interplay
between these factors allows one to explain how spirals form, drift together
with the moving boundary, get transiently pinned to local inhomogeneities, and
finally penetrate into the bulk of the well-coupled tissue where they reach
macroscopic scale. The asymptotic theory of the drift of spiral and scroll
waves based on response functions provides explanation of the drifts involved
in this mechanism, with the exception of effects due to the discreteness of
cardiac tissue. In particular, this asymptotic theory allows an extrapolation
of 2D events into 3D, which has shown that cells within the border zone can
give rise to 3D analogues of spirals, the scroll waves. When and if such scroll
waves escape into a better coupled tissue, they are likely to collapse due to
the positive filament tension. However, our simulations have shown that such
collapse of newly generated scrolls is not inevitable and that under certain
conditions filament tension becomes negative, leading to scroll filaments to
expand and multiply leading to a fibrillation-like state within small areas of
cardiac tissue.Comment: 26 pages, 13 figures, appendix and 2 movies, as accepted to PLoS ONE
2011/08/0
Is Our Universe Natural?
It goes without saying that we are stuck with the universe we have.
Nevertheless, we would like to go beyond simply describing our observed
universe, and try to understand why it is that way rather than some other way.
Physicists and cosmologists have been exploring increasingly ambitious ideas
that attempt to explain why certain features of our universe aren't as
surprising as they might first appear.Comment: Invited review for Nature, 11 page
A realistic pattern of fermion masses from a five-dimensional SO(10) model
We provide a unified description of fermion masses and mixing angles in the
framework of a supersymmetric grand unified SO(10) model with anarchic Yukawa
couplings of order unity. The space-time is five dimensional and the extra flat
spatial dimension is compactified on the orbifold ,
leading to Pati-Salam gauge symmetry on the boundary where Yukawa interactions
are localised. The gauge symmetry breaking is completed by means of a rather
economic scalar sector, avoiding the doublet-triplet splitting problem. The
matter fields live in the bulk and their massless modes get exponential
profiles, which naturally explain the mass hierarchy of the different fermion
generations. Quarks and leptons properties are naturally reproduced by a
mechanism, first proposed by Kitano and Li, that lifts the SO(10) degeneracy of
bulk masses in terms of a single parameter. The model provides a realistic
pattern of fermion masses and mixing angles for large values of . It
favours normally ordered neutrino mass spectrum with the lightest neutrino mass
below 0.01 eV and no preference for leptonic CP violating phases. The right
handed neutrino mass spectrum is very hierarchical and does not allow for
thermal leptogenesis. We analyse several variants of the basic framework and
find that the results concerning the fermion spectrum are remarkably stable.Comment: 30 pages, 7 figures, 4 table
New Physics in Bs -> J/psi phi: a General Analysis
Recently, the CDF and D0 collaborations measured indirect CP violation in Bs
-> J/psi phi and found a hint of a signal. If taken at face value, this can be
interpreted as a nonzero phase of Bs-Bsbar mixing (beta_s), in disagreement
with the standard model, which predicts that beta_s ~= 0. In this paper, we
argue that this analysis may be incomplete. In particular, there can be new
physics (NP) in the bbar -> sbar c cbar decay. If so, the value of beta_s is
different than for the case in which NP is assumed to be present only in the
mixing. We have examined several models of NP and found that, indeed, there can
be significant contributions to the decay. These effects are consistent with
measurements in B -> J/psi K* and Bd -> J/psi Ks. Due to the NP in the decay,
polarization-dependent indirect CP asymmetries and triple-product asymmetries
are predicted in Bs -> J/psi phi.Comment: 28 pages, JHEP, no figures. Considerable changes made. Abstract and
main text of paper modified to alter presentation. Appendix added. References
added. Conclusions unchanged
The Interplay Between GUT and Flavour Symmetries in a Pati-Salam x S4 Model
Both Grand Unified symmetries and discrete flavour symmetries are appealing
ways to describe apparent structures in the gauge and flavour sectors of the
Standard Model. Both symmetries put constraints on the high energy behaviour of
the theory. This can give rise to unexpected interplay when building models
that possess both symmetries. We investigate on the possibility to combine a
Pati-Salam model with the discrete flavour symmetry that gives rise to
quark-lepton complementarity. Under appropriate assumptions at the GUT scale,
the model reproduces fermion masses and mixings both in the quark and in the
lepton sectors. We show that in particular the Higgs sector and the running
Yukawa couplings are strongly affected by the combined constraints of the Grand
Unified and family symmetries. This in turn reduces the phenomenologically
viable parameter space, with high energy mass scales confined to a small region
and some parameters in the neutrino sector slightly unnatural. In the allowed
regions, we can reproduce the quark masses and the CKM matrix. In the lepton
sector, we reproduce the charged lepton masses, including bottom-tau
unification and the Georgi-Jarlskog relation as well as the two known angles of
the PMNS matrix. The neutrino mass spectrum can present a normal or an inverse
hierarchy, and only allowing the neutrino parameters to spread into a range of
values between and , with .
Finally, our model suggests that the reactor mixing angle is close to its
current experimental bound.Comment: 62 pages, 4 figures; references added, version accepted for
publication in JHE
Deuteron and antideuteron production in Au+Au collisions at sqrt(s_NN)=200 GeV
The production of deuterons and antideuterons in the transverse momentum
range 1.1 < p_T < 4.3 GeV/c at mid-rapidity in Au + Au collisions at
sqrt(s_NN)=200 GeV has been studied by the PHENIX experiment at RHIC. A
coalescence analysis comparing the deuteron and antideuteron spectra with those
of protons and antiprotons, has been performed. The coalescence probability is
equal for both deuterons and antideuterons and increases as a function of p_T,
which is consistent with an expanding collision zone. Comparing (anti)proton
yields p_bar/p = 0.73 +/- 0.01, with (anti)deuteron yields: d_bar/d = 0.47 +/-
0.03, we estimate that n_bar/n = 0.64 +/- 0.04.Comment: 326 authors, 6 pages text, 5 figures, 1 Table. Submitted to PRL.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV
The invariant differential cross section for inclusive electron production in
p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment
at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4
<= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the
inclusive electron spectrum from semileptonic decays of hadrons carrying heavy
flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via
three independent methods. The resulting electron spectrum from heavy flavor
decays is compared to recent leading and next-to-leading order perturbative QCD
calculations. The total cross section of charm quark-antiquark pair production
is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Investigation of the mechanism of chromium removal in (3-aminopropyl)trimethoxysilane functionalized mesoporous silica
We are proposed that a possible mechanism for Cr(VI) removal by functionalized mesoporous silica. Mesoporous silica was functionalized with (3-aminopropyl)trimethoxysilane (APTMS) using the post-synthesis grafting method. The synthesized materials were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), N-2 adsorption-desorption analysis, Fourier-transform infrared (FT-IR), thermogravimetric analyses (TGA), and X-ray photoelectron spectroscopy (XPS) to confirm the pore structure and functionalization of amine groups, and were subsequently used as adsorbents for the removal of Cr(VI) from aqueous solution. As the concentration of APTMS increases from 0.01 M to 0.25 M, the surface area of mesoporous silica decreases from 857.9 m(2)/g to 402.6 m(2)/g. In contrast, Cr(VI) uptake increases from 36.95 mg/g to 83.50 mg/g. This indicates that the enhanced Cr(VI) removal was primarily due to the activity of functional groups. It is thought that the optimum concentration of APTMS for functionalization is approximately 0.05 M. According to XPS data, NH3+ and protonated NH2 from APTMS adsorbed anionic Cr(VI) by electrostatic interaction and changed the solution pH. Equilibrium data are well fitted by Temkin and Sips isotherms. This research shows promising results for the application of amino functionalized mesoporous silica as an adsorbent to removal Cr(VI) from aqueous solution
- …
