88 research outputs found

    Fast optoelectric printing of plasmonic nanoparticles into tailored circuits

    Get PDF
    Plasmonic nanoparticles are able to control light at nanometre-scale by coupling electromagnetic fields to the oscillations of free electrons in metals. Deposition of such nanoparticles onto substrates with tailored patterns is essential, for example, in fabricating plasmonic structures for enhanced sensing. This work presents an innovative micro-patterning technique, based on optoelectic printing, for fast and straightforward fabrication of curve-shaped circuits of plasmonic nanoparticles deposited onto a transparent electrode often used in optoelectronics, liquid crystal displays, touch screens, etc. We experimentally demonstrate that this kind of plasmonic structure, printed by using silver nanoparticles of 40 nm, works as a plasmonic enhanced optical device allowing for polarized-color-tunable light scattering in the visible. These findings have potential applications in biosensing and fabrication of future optoelectronic devices combining the benefits of plasmonic sensing and the functionality of transparent electrodes

    Chronic intermittent hypoxia induces local inflammation of the rat carotid body via functional upregulation of proinflammatory cytokine pathways

    Get PDF
    Maladaptive changes in the carotid body (CB) induced by chronic intermittent hypoxia (IH) account for the pathogenesis of cardiovascular morbidity in patients with sleep-disordered breathing. We postulated that the proinflammatory cytokines, namely interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α, and cytokine receptors (IL-1r1, gp130 and TNFr1) locally expressed in the rat CB play a pathophysiological role in IH-induced CB inflammation. Results showed increased levels of oxidative stress (serum 8-isoprostane and nitrotyrosine in the CB) in rats with 7-day IH treatment resembling recurrent apneic conditions when compared with the normoxic control. Local inflammation shown by the amount of ED1-containing cells (macrophage infiltration) and the gene transcripts of NADPH oxidase subunits (gp91phox and p22phox) and chemokines (MCP-1, CCR2, MIP-1α, MIP-1β and ICAM-1) in the CB were significantly more in the hypoxic group than in the control. In addition, the cytokines and receptors were expressed in the lobules of chemosensitive glomus cells containing tyrosine hydroxylase and the levels of expressions were significantly increased in the hypoxic group. Exogenous cytokines elevated the intracellular calcium ([Ca2+]i) response to acute hypoxia in the dissociated glomus cells. The effect of cytokines on the [Ca2+]i response was significantly greater in the hypoxic than in the normoxic group. Moreover, daily treatment of IH rats with anti-inflammatory drugs (dexamethasone or ibuprofen) attenuated the levels of oxidative stress, gp91phox expression and macrophage infiltration in the CB. Collectively, these results suggest that the upregulated expression of proinflammatory cytokine pathways could mediate the local inflammation and functional alteration of the CB under chronic IH conditions

    Zinc Coordination Is Required for and Regulates Transcription Activation by Epstein-Barr Nuclear Antigen 1

    Get PDF
    Epstein-Barr Nuclear Antigen 1 (EBNA1) is essential for Epstein-Barr virus to immortalize naïve B-cells. Upon binding a cluster of 20 cognate binding-sites termed the family of repeats, EBNA1 transactivates promoters for EBV genes that are required for immortalization. A small domain, termed UR1, that is 25 amino-acids in length, has been identified previously as essential for EBNA1 to activate transcription. In this study, we have elucidated how UR1 contributes to EBNA1's ability to transactivate. We show that zinc is necessary for EBNA1 to activate transcription, and that UR1 coordinates zinc through a pair of essential cysteines contained within it. UR1 dimerizes upon coordinating zinc, indicating that EBNA1 contains a second dimerization interface in its amino-terminus. There is a strong correlation between UR1-mediated dimerization and EBNA1's ability to transactivate cooperatively. Point mutants of EBNA1 that disrupt zinc coordination also prevent self-association, and do not activate transcription cooperatively. Further, we demonstrate that UR1 acts as a molecular sensor that regulates the ability of EBNA1 to activate transcription in response to changes in redox and oxygen partial pressure (pO2). Mild oxidative stress mimicking such environmental changes decreases EBNA1-dependent transcription in a lymphoblastoid cell-line. Coincident with a reduction in EBNA1-dependent transcription, reductions are observed in EBNA2 and LMP1 protein levels. Although these changes do not affect LCL survival, treated cells accumulate in G0/G1. These findings are discussed in the context of EBV latency in body compartments that differ strikingly in their pO2 and redox potential

    Characterization of miRNAs in Response to Short-Term Waterlogging in Three Inbred Lines of Zea mays

    Get PDF
    Waterlogging of plants leads to low oxygen levels (hypoxia) in the roots and causes a metabolic switch from aerobic respiration to anaerobic fermentation that results in rapid changes in gene transcription and protein synthesis. Our research seeks to characterize the microRNA-mediated gene regulatory networks associated with short-term waterlogging. MicroRNAs (miRNAs) are small non-coding RNAs that regulate many genes involved in growth, development and various biotic and abiotic stress responses. To characterize the involvement of miRNAs and their targets in response to short-term hypoxia conditions, a quantitative real time PCR (qRT-PCR) assay was used to quantify the expression of the 24 candidate mature miRNA signatures (22 known and 2 novel mature miRNAs, representing 66 miRNA loci) and their 92 predicted targets in three inbred Zea mays lines (waterlogging tolerant Hz32, mid-tolerant B73, and sensitive Mo17). Based on our studies, miR159, miR164, miR167, miR393, miR408 and miR528, which are mainly involved in root development and stress responses, were found to be key regulators in the post-transcriptional regulatory mechanisms under short-term waterlogging conditions in three inbred lines. Further, computational approaches were used to predict the stress and development related cis-regulatory elements on the promoters of these miRNAs; and a probable miRNA-mediated gene regulatory network in response to short-term waterlogging stress was constructed. The differential expression patterns of miRNAs and their targets in these three inbred lines suggest that the miRNAs are active participants in the signal transduction at the early stage of hypoxia conditions via a gene regulatory network; and crosstalk occurs between different biochemical pathways

    In vitro neuroprotective potential of four medicinal plants against rotenone-induced toxicity in SH-SY5Y neuroblastoma cells

    Get PDF
    BACKGROUND: Lannea schweinfurthii, Zanthoxylum capense, Scadoxus puniceus and Crinum bulbispermum are used traditionally to treat neurological disorders. The aim of this study was to evaluate the cytoprotective potential of the four plants, after induction of toxicity using rotenone, in SH-SY5Y neuroblastoma cells. METHODS: Cytotoxicity of the plant extracts and rotenone was assessed using the sulforhodamine B (SRB) assay. Fluorometry was used to measure intracellular redox state (reactive oxygen species (ROS) and intracellular glutathione content), mitochondrial membrane potential (MMP) and caspase-3 activity, as a marker of apoptotic cell death. RESULTS: Of the tested plants, the methanol extract of Z. capense was the least cytotoxic; LC(50) 121.3 ± 6.97 μg/ml, while S. puniceus methanol extract was the most cytotoxic; LC(50) 20.75 ± 1.47 μg/ml. Rotenone reduced intracellular ROS levels after 24 h exposure. Pre-treating cells with S. puniceus and C. bulbispermum extracts reversed the effects of rotenone on intracellular ROS levels. Rotenone exposure also decreased intracellular glutathione levels, which was counteracted by pre-treatment with any one of the extracts. MMP was reduced by rotenone, which was neutralized by pre-treatment with C. bulbispermum ethyl acetate extract. All extracts inhibited rotenone-induced activation of caspase-3. CONCLUSION: The studied plants demonstrated anti-apoptotic activity and restored intracellular glutathione content following rotenone treatment, suggesting that they may possess neuroprotective properties

    The α-ketoglutarate dehydrogenase complex in cancer metabolic plasticity

    Get PDF
    Deregulated metabolism is a well-established hallmark of cancer. At the hub of various metabolic pathways deeply integrated within mitochondrial functions, the α-ketoglutarate dehydrogenase complex represents a major modulator of electron transport chain activity and tricarboxylic acid cycle (TCA) flux, and is a pivotal enzyme in the metabolic reprogramming following a cancer cell’s change in bioenergetic requirements. By contributing to the control of α-ketoglutarate levels, dynamics, and oxidation state, the α-ketoglutarate dehydrogenase is also essential in modulating the epigenetic landscape of cancer cells. In this review, we will discuss the manifold roles that this TCA enzyme and its substrate play in cancer

    Photoperiod- and Triiodothyronine-Dependent Regulation of Reproductive Neuropeptides, Proinflammatory Cytokines, and Peripheral Physiology in Siberian Hamsters (Phodopus sungorus).

    No full text
    Acknowledgements The study hypotheses and design were conceived by TJS. RB and TJS conducted, collected, and analyzed the data. RB, MD, and TJS wrote the paper. This work was financed by the University of Aberdeen College of Life Sciences and Medicine fund to TJS. We thank Elisabetta Tolla for her technical assistance. Conflict of Interest Statement The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article. Funding The author(s) received no financial support for the research, authorship, and/or publication of this article.Peer reviewedPostprin

    Zoonotic infections of buffalopox in India.

    No full text
    Four outbreaks of buffalopox in domestic buffaloes, with considerable mortality with high case fatality rates in young buffalo calves and high morbidity with significant productivity loss in terms of reduction in milk yield in adult animals along with severe zoonotic infection in milk attendants were recorded at various places in India, during 2006-2008. In buffaloes, the pox lesions were confined to udder and teats of the majority of the affected animals, and in few animals the lesions were appeared on the hindquarters, indicating generalized infection. The overall disease morbidity, mortality and case fatality rate were 6.8%, 0.7% and 11.4% respectively. Milkers developed pox-like lesions on the hands, forearms and forehead accompanied by fever, axillary lymphadenopathy and general malaise. The causative agent of the outbreaks, buffalopox virus (BPXV), was confirmed upon virus isolation in cell culture, electron microscopy, A-type inclusion (ATI) and ankyrin repeat protein (C18L) gene-specific polymerase chain reactions (PCR). Further, sequence analysis of the BPXV isolates from human and buffalo showed more identity of ATI and C18L genes sequences with that of other orthopoxviruses at nucleotide and amino acid levels and confirmed a close relationship of BPXV with Vaccinia virus (VACV) or VACV-like viruses. Considering the zoonotic impact and productivity losses of buffalopox infection, the control measures are imperative in curtailing economic and public health impact of the disease
    corecore