11 research outputs found

    Efficient CRISPR/Cas9 genome editing in a salmonid fish cell line using a lentivirus delivery system

    Get PDF
    The present study was funded by were funded by the Biotechnology and Biological Sciences Research Council (BB/R008612/1, BB/S004343/1 to RH and RG; grant BB/R008973/1 to SM and CD) and the Institute Strategic Programme Grants (BBS/E/D/20002172, BBS/E/D/30002275 and BBS/E/D/10002070, to RH and RG). The funders had no roles in the study design, data collection and analysis, decision to publish or preparation of the manuscript.Peer reviewedPublisher PD

    CAR-T cell. the long and winding road to solid tumors

    Get PDF
    Adoptive cell therapy of solid tumors with reprogrammed T cells can be considered the "next generation" of cancer hallmarks. CAR-T cells fail to be as effective as in liquid tumors for the inability to reach and survive in the microenvironment surrounding the neoplastic foci. The intricate net of cross-interactions occurring between tumor components, stromal and immune cells leads to an ineffective anergic status favoring the evasion from the host's defenses. Our goal is hereby to trace the road imposed by solid tumors to CAR-T cells, highlighting pitfalls and strategies to be developed and refined to possibly overcome these hurdles

    Gene activity in primary T cells infected with HIV89.6: intron retention and induction of genomic repeats

    Get PDF

    Position effects influence HIV latency reversal

    No full text
    The main obstacle to curing HIV is the presence of latent proviruses in the bodies of infected patients. The partial success of reactivation therapies suggests that the genomic context of integrated proviruses can interfere with treatment. Here we developed a method called Barcoded HIV ensembles (B-HIVE) to map the chromosomal locations of thousands of individual proviruses while tracking their transcriptional activities in an infected cell population. B-HIVE revealed that, in Jurkat cells, the expression of HIV is strongest close to endogenous enhancers. The insertion site also affects the response to latency-reversing agents, because we found that phytohemagglutinin and vorinostat reactivated proviruses inserted at distinct genomic locations. From these results, we propose that combinations of drugs targeting all areas of the genome will be most effective. Overall, our data suggest that the insertion context of HIV is a critical determinant of the viral response to reactivation therapies.This research was supported by the Government of Catalonia and the Spanish Ministry of Economy and Competitiveness (Plan Nacional BFU2012-37168, Centro de Excelencia Severo Ochoa 2013-2017 SEV-2012-0208). J.P.M. and A.M. were supported by a grant from the Spanish Ministry of Economy and Competitiveness and FEDER (SAF2013-46077-R). E.Z. and G.J.F. are supported by the European Research Council (Synergy Grant 609989)

    Spatially clustered loci with multiple enhancers are frequent targets of HIV-1 integration

    Get PDF
    HIV-1 recurrently targets active genes and integrates in the proximity of the nuclear pore compartment in CD4+ T cells. However, the genomic features of these genes and the relevance of their transcriptional activity for HIV-1 integration have so far remained unclear. Here we show that recurrently targeted genes are proximal to super-enhancer genomic elements and that they cluster in specific spatial compartments of the T cell nucleus. We further show that these gene clusters acquire their location during the activation of T cells. The clustering of these genes along with their transcriptional activity are the major determinants of HIV-1 integration in T cells. Our results provide evidence of the relevance of the spatial compartmentalization of the genome for HIV-1 integration, thus further strengthening the role of nuclear architecture in viral infection.This work was supported by German Center for Infection Research (DZIF) Thematic Translational Unit HIV-1 04.704 Infrastructural Measure to M.L. and by the Hector Grant M70 “HiPNose: HiV Positioning in the Nuclear Space” to M.L. and M.S. We acknowledge the financial support of the Spanish Ministry of Economy and Competitiveness (“Centro de Excelencia Severo Ochoa 2013–2017,” Plan Nacional BFU2012–37168), of the CERCA (Centres de Recerca de Catalunya) Programme/Generalitat de Catalunya, and of the European Research Council (Synergy Grant 609989). K.V. and M.K. are supported by the European Structural and Investment Funds grant for the Croatian National Centre of Research Excellence in Personalized Healthcare (contract #KK.01.1.1.01.0010), Croatian National Centre of Research Excellence for Data Science and Advanced Cooperative Systems (contract KK.01.1.1.01.0009), and Croatian Science Foundation (grant IP-2014–09–6400)
    corecore