20 research outputs found

    NUMERICAL ANALYSIS of the FOOT in HEALTHY and DEGENERATIVE CONDITIONS

    No full text
    The aim of this work is the development of a 3D numerical model of the foot that allows evaluating the influence of degenerative phenomena on the foot mechanical functionality. Such degenerative phenomena induce histo-morphological alterations and significant modification of the plantar soft tissue mechanical properties, as stiffening and lower damping capabilities. The finite element model of the foot is developed starting from the analysis of biomedical images. Different constitutive models define the mechanical response of the biological tissues. Because of the major role of plantar soft tissue in the here proposed analysis, a specific viscohyperelastic constitutive formulation is provided considering the typical features of the tissue mechanics, as geometric and material non linearity, almost incompressible behavior and time-dependent phenomena. Constitutive parameters are identified by the analysis of experimental data from in vitro and in vivo mechanical tests, leading to the identification of a range of constitutive parameters for healthy and degenerative conditions. Numerical analyses are developed to investigate the influence of the progression of the degeneration on the distribution of stress and of strain within foot tissues during static standing. Numerical results show the increase of stress values with the appearance of degenerative conditions, showing the typical stiffening phenomenon. The mechanical response of the plantar soft tissue during specific loading condition and the influence of degenerative phenomena on foot mechanics can be evaluated with numerical analysis

    Urethral lumen occlusion by artificial sphincteric device: Evaluation of degraded tissues effects

    No full text
    Urinary incontinence can be surgically treated by means of artificial sphincters, based on a cuff that provides a pressure around the urethra to occlude the lumen. Considering the frequent access of elderly patients to this surgical practice, tissue degradation phenomena must be investigated, since they could affect treatment reliability and durability. The potential degradation can be interpreted considering a variation within soft tissue constitutive formulation, by means of a correlation between mechanical properties and tissues ageing. The overall compressibility varies, as characteristics aspect of soft tissue mechanical response with age, as well as the stiffness. The investigation is performed by means of a three dimensional numerical model of the urethral duct. The effects of the interaction phenomenon with a cuff is interpreted considering the changes, within the constitutive models, of the basic parameters that define the potential degradation process. The deformation related to compressibility is recalled, ranging between ten and fifty percent in dependence on the degradation level considered. This parameter, reported mostly as representative of the aging effect, shows a large variation that confirms the relevance of the investigation performed toward a sensitivity of the mechanical response of the urethral duct referred to the lumen occlusion

    Biomechanical response of the plantar tissues of the foot in healthy and degenerative conditions

    No full text
    Introduction: This work reports a set of results on the mechanical response of foot plantar tissues in healthy and degenerative conditions during the gait cycle, by means of a computational approach. Methods: A three dimensional finite element model of the foot was developed starting from the analysis of biomedical images. Different constitutive models were defined to interpret the mechanical response of the biological tissues. In particular, a specific visco-hyperelastic constitutive formulation was provided for foot plantar soft tissue considering the general features of tissue mechanics. Degenerative phenomena induce histomorphological alterations and modification of the mechanical properties, as stiffening and lower damping capabilities. Different constitutive parameters for healthy and degenerative conditions were identified by the inverse analysis of experimental data from mechanical tests. Results: The three dimensional numerical model interprets the capability of the plantar soft tissue to act under mechanical actions in different conditions during the phases of the gait cycle. Conclusion: Numerical results highlight aspects of the different stress and strain distributions at the heel strike and the midstance of the healthy and degenerative conditions

    Urethral lumen occlusion by artificial sphincteric devices: a computational biomechanics approach

    No full text
    The action induced by artificial sphincteric devices to provide urinary continence is related to the problem of evaluating the interaction between the occlusive cuff and the urethral duct. The intensity and distribution of the force induced within the region of application determine a different occlusion process and potential degradation of the urethral tissue, mostly at the borders of the cuff. This problem is generally considered in the light of clinical and surgical operational experience, while a valid cooperation is established with biomechanical competences by means of experimental and numerical investigation. A three-dimensional model of the urethra is proposed aiming at a representation of the phases of the urethral occlusion through artificial sphincters. Different conformations of the cuff are considered, mimicking different loading conditions in terms of force intensity and distribution and consequent deformation caused in soft tissues. The action induced in the healthy urethra is investigated, as basis for an evaluation of the efficacy and reliability of the sphincteric devices. The problem is characterized by coupled nonlinear geometric and material problem and entails a complex constitutive formulation. A heavy computational procedure is developed by means of analyses that operate within an explicit finite element formulation. Results reported outline the overall response of the urethral duct during lumen occlusion, leading to an accurate description of the phenomenon in the different phases
    corecore