147 research outputs found

    Heme modulates smooth muscle cell proliferation and migration via NADPH oxidase: A counter-regulatory role for heme oxygenase system

    Get PDF
    AbstractAccumulation of vascular smooth muscle cells (VSMC) in response to inflammatory stimuli is a key event in atherogenesis, which commonly occurs in sinuous vessels with turbulent blood flow what leads to hemolysis and consequent free heme accumulation, a known pro-oxidant and pro-inflammatory molecule.In this work, we investigated the effects of free heme on VSMC, and the molecular mechanisms underlying this process.Free heme induces a concentration-dependent migration and proliferation of VSMC which depends on the production of reactive oxygen species (ROS) derived from NADPH oxidase (NADPHox) activity. Additionally, heme activates redox-sensitive proliferation-related signaling routes, such as Mitogen Activated Protein Kinase (MAPK) and NF-κB, and induces Heme Oxygenase-1 (HO-1) expression. NADPHox-dependent proliferative effect of heme seems to be endogenously modulated by HO since the pretreatment of VSMC with HO inhibitors potentiates heme-induced proliferation and, in parallel, increases ROS production. These effects were no longer observed in the presence of heme metabolites, carbon monoxide and biliverdin.The data indicate that VSMC proliferation induced by heme is endogenously modulated by a critical counter-regulatory crosstalk between NADPHox and HO systems

    Methylation status of ANAPC1, CDKN2A and TP53 promoter genes in individuals with gastric cancer

    Get PDF
    Gastric cancer is the forth most frequent malignancy and the second most common cause of cancer death worldwide. DNA methylation is the most studied epigenetic alteration, occurring through a methyl radical addition to the cytosine base adjacent to guanine. Many tumor genes are inactivated by DNA methylation in gastric cancer. We evaluated the DNA methylation status of ANAPC1, CDKN2A and TP53 by methylation-specific PCR in 20 diffuse- and 26 intestinal-type gastric cancer samples and 20 normal gastric mucosa in individuals from Northern Brazil. All gastric cancer samples were advanced stage adenocarcinomas. Gastric samples were surgically obtained at the João de Barros Barreto University Hospital, State of Pará, and were stored at -80°C before DNA extraction. Patients had never been submitted to chemotherapy or radiotherapy, nor did they have any other diagnosed cancer. None of the gastric cancer samples presented methylated DNA sequences for ANAPC1 and TP53. CDKN2A methylation was not detected in any normal gastric mucosa; however, the CDKN2A promoter was methylated in 30.4% of gastric cancer samples, with 35% methylation in diffuse-type and 26.9% in intestinal-type cancers. CDKN2A methylation was associated with the carcinogenesis process for ~30% diffuse-type and intestinal-type compared to non-neoplastic samples. Thus, ANAPC1 and TP53 methylation was probably not implicated in gastric carcinogenesis in our samples. CDKN2A can be implicated in the carcinogenesis process of only a subset of gastric neoplasias.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FINEP/CT-INFRAFAEPAUniversidade Federal do Piauí Colegiado de BiomedicinaUniversidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Departamento de MorfologiaUniversidade Federal do Pará Instituto de Ciências Biológicas Laboratório de Citogenética HumanaHospital João de Barros Barreto Serviço de CirurgiaInstituto de Investigaciones BiomedicasUniversidade de São Paulo Faculdade de Medicina de Ribeirão Preto Departamento de GenéticaUNIFESP, EPM, Depto. de MorfologiaFINEP/CT-INFRA: 0927-03SciEL

    Influence of thermally induced chemorheological changes on the torsion of elastomeric circular cylinders

    Full text link
    When an elastomeric material is deformed and subjected to temperatures above some characteristic value T cr (near 100 ∘ C for natural rubber), its macromolecular structure undergoes time and temperature-dependent chemical changes. The process continues until the temperature decreases below T cr . Compared to the virgin material, the new material system has modified properties (reduced stiffness) and permanent set on removal of the applied load.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46097/1/161_2006_Article_9.pd
    • …
    corecore