13 research outputs found

    Mesial temporal, diencephalic, and striatal contributions to deficits in single word reading, word priming, and recognition memory

    Full text link
    Fifty-three volunteer participants were studied with the fade-in task (Ostergaard, 1998) to measure naming latency, word priming, and recognition-memory performance. and with morphometric magnetic resonance imaging (MRI) techniques to measure volumes of mesial temporal lobe, diencephalic, striatal, and neocortical structures. The relationship between measures of cerebral volume loss and performance deficits was modeled using simultaneous regression analyses in which the behavioral measures were dependent variables. The results suggested that damage in both hippocampal and amygdala/entorhinal areas as well as damage in the diencephalon and the nucleus accumbens all contributed independently to the severity of recognition-memory deficits. Both caudate nucleus damage and hippocampal damage contributed independently to increased naming latency (slowed single-word reading). Finally, only damage in the hippocampus appeared to result in decreased word priming. These results provide further evidence against the assertion that word priming represents a form of memory unaffected by damage to the mesial temporal lobes

    Priming deficits in amnesia: Now you see them, now you don't

    No full text

    Priming performance in Alzheimer's disease: The role of task sensitivity

    No full text

    More "mapping" in brain mapping: statistical comparison of effects.

    No full text
    The term "mapping" in the context of brain imaging conveys to most the concept of localization; that is, a brain map is meant to reveal a relationship between some condition or parameter and specific sites within the brain. However, in reality, conventional voxel-based maps of brain function, or for that matter of brain structure, are generally constructed using analyses that yield no basis for inferences regarding the spatial nonuniformity of the effects. In the normal analysis path for functional images, for example, there is nowhere a statistical comparison of the observed effect in any voxel relative to that in any other voxel. Under these circumstances, strictly speaking, the presence of significant activation serves as a legitimate basis only for inferences about the brain as a unit. In their discussion of results, investigators rarely are content to confirm the brain's role, and instead generally prefer to interpret the spatial patterns they have observed. Since "pattern" implies nonuniform effects over the map, this is equivalent to interpreting results without bothering to test their significance, a practice most of the experimentally-trained would eschew in other contexts. In this review, we appeal to investigators to adopt a new standard of data presentation that facilitates comparison of effects across the map. Evidence for sufficient effect size difference between the effects in structures of interest should be a prerequisite to the interpretation of spatial patterns of activation

    Intravenous alteplase for stroke with unknown time of onset guided by advanced imaging: systematic review and meta-analysis of individual patient data

    No full text
    Background: Patients who have had a stroke with unknown time of onset have been previously excluded from thrombolysis. We aimed to establish whether intravenous alteplase is safe and effective in such patients when salvageable tissue has been identified with imaging biomarkers. Methods: We did a systematic review and meta-analysis of individual patient data for trials published before Sept 21, 2020. Randomised trials of intravenous alteplase versus standard of care or placebo in adults with stroke with unknown time of onset with perfusion-diffusion MRI, perfusion CT, or MRI with diffusion weighted imaging-fluid attenuated inversion recovery (DWI-FLAIR) mismatch were eligible. The primary outcome was favourable functional outcome (score of 0–1 on the modified Rankin Scale [mRS]) at 90 days indicating no disability using an unconditional mixed-effect logistic-regression model fitted to estimate the treatment effect. Secondary outcomes were mRS shift towards a better functional outcome and independent outcome (mRS 0–2) at 90 days. Safety outcomes included death, severe disability or death (mRS score 4–6), and symptomatic intracranial haemorrhage. This study is registered with PROSPERO, CRD42020166903. Findings: Of 249 identified abstracts, four trials met our eligibility criteria for inclusion: WAKE-UP, EXTEND, THAWS, and ECASS-4. The four trials provided individual patient data for 843 individuals, of whom 429 (51%) were assigned to alteplase and 414 (49%) to placebo or standard care. A favourable outcome occurred in 199 (47%) of 420 patients with alteplase and in 160 (39%) of 409 patients among controls (adjusted odds ratio [OR] 1·49 [95% CI 1·10–2·03]; p=0·011), with low heterogeneity across studies (I 2=27%). Alteplase was associated with a significant shift towards better functional outcome (adjusted common OR 1·38 [95% CI 1·05–1·80]; p=0·019), and a higher odds of independent outcome (adjusted OR 1·50 [1·06–2·12]; p=0·022). In the alteplase group, 90 (21%) patients were severely disabled or died (mRS score 4–6), compared with 102 (25%) patients in the control group (adjusted OR 0·76 [0·52–1·11]; p=0·15). 27 (6%) patients died in the alteplase group and 14 (3%) patients died among controls (adjusted OR 2·06 [1·03–4·09]; p=0·040). The prevalence of symptomatic intracranial haemorrhage was higher in the alteplase group than among controls (11 [3%] vs two [<1%], adjusted OR 5·58 [1·22–25·50]; p=0·024). Interpretation: In patients who have had a stroke with unknown time of onset with a DWI-FLAIR or perfusion mismatch, intravenous alteplase resulted in better functional outcome at 90 days than placebo or standard care. A net benefit was observed for all functional outcomes despite an increased risk of symptomatic intracranial haemorrhage. Although there were more deaths with alteplase than placebo, there were fewer cases of severe disability or death. Funding: None
    corecore