5 research outputs found

    Travel blogs on China as a destination image formation agent: A qualitative analysis using Leximancer

    Get PDF
    The Internet spreads tourism information around the world and specifically travel blogs function as an online version of word-of-mouth (eWOM). This research explored the role of blogs as a destination image formation agent for China's inbound tourism. Data were collected from 630 bloggers who wrote on two blog websites about their travels within China in 2011 and 2012. The bloggers on TravelBlog.org and TravelPod.com were mainly from English-speaking countries. Qualitative analysis using Leximancer software was applied and identified nine major textual themes and the relationships among these themes. In order of relative importance, the themes were place, Chinese, people, food, train, city, hotel, China, and students. The research indicated that international tourists tended to have positive images of China

    Methanogenic activity and biomass in Holocene permafrost deposits of the Lena Delta, Siberian Arctic and its implication for the global methane budget

    Get PDF
    Permafrost environments within the Siberian Arctic are natural sources of the climate relevant trace gas methane. In order to improve our understanding of the present and future carbon dynamics in high latitudes, we studied the methane concentration, the quantity and quality of organic matter, and the activity and biomass of the methanogenic community in permafrost deposits. For these investigations a permafrost core of Holocene age was drilled in the Lena Delta (72°22′N, 126°28′E). The organic carbon of the permafrost sediments varied between 0.6% and 4.9% and was characterized by an increasing humification index with permafrost depth. A high CH4 concentration was found in the upper 4 m of the deposits, which correlates well with the methanogenic activity and archaeal biomass (expressed as PLEL concentration). Even the incubation of core material at −3 and −6°C with and without substrates showed a significant CH4 production (range: 0.04–0.78 nmol CH4 h−1 g−1). The results indicated that the methane in Holocene permafrost deposits of the Lena Delta originated from modern methanogenesis by cold-adapted methanogenic archaea. Microbial generated methane in permafrost sediments is so far an underestimated factor for the future climate development

    Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality

    Get PDF
    For the understanding and assessment of recent and future carbon dynamics of arctic permafrost soils the processes of CH4 production and oxidation, the community structure and the quality of DOM were studied in two soils of a polygonal tundra. Activities of methanogens and methanotrophs differed significantly in their rates and distribution patterns among the two investigated profiles. Community structure analysis showed similarities between both soils for esterlinked PLFAs and differences in the fraction of unsaponifiable PLFAs and PLELs. Furthermore, a shift of the overall composition of the microbiota with depth at both sites was indicated by an increasing portion of iso- and anteiso-branched fatty acids related to the amount of straight chain fatty acids. Although permafrost soils represent a large carbon pool, it was shown, that the reduced quality of organic matter leads to a substrate limitation of the microbial metabolism. It can be concluded from our and previous findings firstly that microbial communities in the active layer of an Arctic polygon tundra are composed by members of all three domains of life, with a total biomass comparable to temperate soil ecosystems. And secondly that these microorganisms are well adapted to the extreme temperature gradient of their environment

    Traditional cattle manure application determines abundance, diversity and activity of methanogenic Archaea in arable European soil.

    Get PDF
    Based on lipid analyses, 16S rRNA/rRNA gene single-strand conformation polymorphism fingerprints and methane flux measurements, influences of the fertilization regime on abundance and diversity of archaeal communities were investigated in soil samples from the long-term (103 years) field trial in Bad Lauchstädt, Germany. The investigated plots followed a gradient of increasing fertilization beginning at no fertilization and ending at the 'cattle manure' itself. The archaeal phospholipid etherlipid (PLEL) concentration was used as an indicator for archaeal biomass and increased with the gradient of increasing fertilization, whereby the concentrations determined for organically fertilized soils were well above previously reported values. Methane emission, although at a low level, were occasionally only observed in organically fertilized soils, whereas the other treatments showed significant methane uptake. Euryarchaeotal organisms were abundant in all investigated samples but 16S rRNA analysis also demonstrated the presence of Crenarchaeota in fertilized soils. Lowest molecular archaeal diversity was found in highest fertilized treatments. Archaea phylogenetically most closely related to cultured methanogens were abundant in these fertilized soils, whereas Archaea with low relatedness to cultured microorganisms dominated in non-fertilized soils. Relatives of Methanoculleus spp. were found almost exclusively in organically fertilized soils or cattle manure. Methanosarcina-related microorganisms were detected in all soils as well as in the cattle manure, but soils with highest organic application rate were specifically dominated by a close phylogenetic relative of Methanosarcina thermophila. Our findings suggest that regular application of cattle manure increased archaeal biomass, but reduced archaeal diversity and selected for methanogenic Methanoculleus and Methanosarcina strains, leading to the circumstance that high organic fertilized soils did not function as a methane sink at the investigated site anymore
    corecore