813 research outputs found
Quantum-noise-induced macroscopic revivals in second-harmonic generation
We investigate the behavior of the fundamental and second-harmonic fields in phase-matched traveling plane-wave second-harmonic generation, using the full-operator equations of motion. We find that, after a certain interaction length, both the macroscopic and quantum-statistical properties of the harmonic and fundamental fields are qualitatively different from those found in previous analyses. The mean fields do not vary in a monotonic way, but oscillate with the propagation length, leading to an unexpected periodic revival of the fundamental field, triggered by the quantum fluctuations always present in the mode. Accordingly, the amplitude noise of the fundamental, previously predicted to be perfectly squeezed for long interaction lengths, actually reaches a very small minimum for a definite length, then increases again
Efficient photoionization for barium ion trapping using a dipole-allowed resonant two-photon transition
Two efficient and isotope-selective resonant two-photon ionization techniques
for loading barium ions into radio-frequency (RF)-traps are demonstrated. The
scheme of using a strong dipole-allowed transition at \lambda=553 nm as a first
step towards ionization is compared to the established technique of using a
weak intercombination line (\lambda=413 nm). An increase of two orders of
magnitude in the ionization efficiency is found favoring the transition at 553
nm. This technique can be implemented using commercial all-solid-state laser
systems and is expected to be advantageous compared to other narrowband
photoionization schemes of barium in cases where highest efficiency and
isotope-selectivity are required.Comment: 8 pages, 5 figure
Electromagnetic Polarization Effects due to Axion Photon Mixing
We investigate the effect of axions on the polarization of electromagnetic
waves as they propagate through astronomical distances. We analyze the change
in the dispersion of the electromagnetic wave due to its mixing with axions. We
find that this leads to a shift in polarization and turns out to be the
dominant effect for a wide range of frequencies. We analyze whether this effect
or the decay of photons into axions can explain the large scale anisotropies
which have been observed in the polarizations of quasars and radio galaxies. We
also comment on the possibility that the axion-photon mixing can explain the
dimming of distant supernovae.Comment: 18 pages, 1 figur
Performance of ewes supplemented with a home-made, grain-based, protein supplement
The performance of ewes supplemented throughout the year with a high protein premix compounded with grain to constitute a home-made block was investigated. Consumption of the supplement was greatest in the July to September period, and supplemented sheep were significantly heavier during this period only
The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles
In the G0 experiment, performed at Jefferson Lab, the parity-violating
elastic scattering of electrons from protons and quasi-elastic scattering from
deuterons is measured in order to determine the neutral weak currents of the
nucleon. Asymmetries as small as 1 part per million in the scattering of a
polarized electron beam are determined using a dedicated apparatus. It consists
of specialized beam-monitoring and control systems, a cryogenic hydrogen (or
deuterium) target, and a superconducting, toroidal magnetic spectrometer
equipped with plastic scintillation and aerogel Cerenkov detectors, as well as
fast readout electronics for the measurement of individual events. The overall
design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method
Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering
We have measured the beam-normal single-spin asymmetry in elastic scattering
of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 =
0.15, 0.25 (GeV/c)^2. The results are inconsistent with calculations solely
using the elastic nucleon intermediate state, and generally agree with
calculations with significant inelastic hadronic intermediate state
contributions. A_n provides a direct probe of the imaginary component of the
2-gamma exchange amplitude, the complete description of which is important in
the interpretation of data from precision electron-scattering experiments.Comment: 5 pages, 3 figures, submitted to Physical Review Letters; shortened
to meet PRL length limit, clarified some text after referee's comment
Thermal rates for baryon and anti-baryon production
We use a form of the fluctuation-dissipation theorem to derive formulas
giving the rate of production of spin-1/2 baryons in terms of the fluctuations
of either meson or quark fields. The most general formulas do not assume
thermal or chemical equilibrium. When evaluated in a thermal ensemble we find
equilibration times on the order of 10 fm/c near the critical temperature in
QCD.Comment: 22 pages, 4 tables and 2 figures, REVTe
Nonfactorizable contributions in B decays to charmonium: the case of
Nonleptonic to charmonium decays generally show deviations from the
factorization predictions. For example, the mode has
been experimentally observed with sizeable branching fraction while its
factorized amplitude vanishes. We investigate the role of rescattering effects
mediated by intermediate charmed meson production in this class of decay modes,
and consider with the meson.
Using an effective lagrangian describing interactions of pairs of heavy-light
mesons with a quarkonium state, we relate this mode to the
analogous mode with in the final state. We find large enough to be measured at the factories, so that this decay
mode could be used to study the poorly known .Comment: RevTex, 16 pages, 2 eps figure
A complete 3D numerical study of the effects of pseudoscalar-photon mixing on quasar polarizations
We present the results of three-dimensional simulations of quasar
polarizations in the presence of pseudoscalar-photon mixing in the
intergalactic medium. The intergalactic magnetic field is assumed to be
uncorrelated in wave vector space but correlated in real space. Such a field
may be obtained if its origin is primordial. Furthermore we assume that the
quasars, located at cosmological distances, have negligible initial
polarization. In the presence of pseudoscalar-photon mixing we show, through a
direct comparison with observations, that this may explain the observed large
scale alignments in quasar polarizations within the framework of big bang
cosmology. We find that the simulation results give a reasonably good fit to
the observed data.Comment: 15 pages, 8 figures, significant changes, to appear in EPJ
Quantum-nondemolition criteria in traveling-wave second-harmonic generation
Using the full nonlinear equations of motion, we calculate the quantum-nondemolition (QND) correlations for the traveling-wave second-harmonic generation. We find that, after a short interaction length, these are qualitatively different from results calculated previously using a linearized fluctuation analysis. We demonstrate that, although individual QND criteria can be very good in certain regions, there is no region where all three of the standard criteria are perfect, as has previously been claimed. We also show that only the amplitude quadrature of the output field can be considered as a QND quantity, with the phase quadrature not satisfying all the criteria
- …
