813 research outputs found

    Quantum-noise-induced macroscopic revivals in second-harmonic generation

    Get PDF
    We investigate the behavior of the fundamental and second-harmonic fields in phase-matched traveling plane-wave second-harmonic generation, using the full-operator equations of motion. We find that, after a certain interaction length, both the macroscopic and quantum-statistical properties of the harmonic and fundamental fields are qualitatively different from those found in previous analyses. The mean fields do not vary in a monotonic way, but oscillate with the propagation length, leading to an unexpected periodic revival of the fundamental field, triggered by the quantum fluctuations always present in the mode. Accordingly, the amplitude noise of the fundamental, previously predicted to be perfectly squeezed for long interaction lengths, actually reaches a very small minimum for a definite length, then increases again

    Efficient photoionization for barium ion trapping using a dipole-allowed resonant two-photon transition

    Full text link
    Two efficient and isotope-selective resonant two-photon ionization techniques for loading barium ions into radio-frequency (RF)-traps are demonstrated. The scheme of using a strong dipole-allowed transition at \lambda=553 nm as a first step towards ionization is compared to the established technique of using a weak intercombination line (\lambda=413 nm). An increase of two orders of magnitude in the ionization efficiency is found favoring the transition at 553 nm. This technique can be implemented using commercial all-solid-state laser systems and is expected to be advantageous compared to other narrowband photoionization schemes of barium in cases where highest efficiency and isotope-selectivity are required.Comment: 8 pages, 5 figure

    Electromagnetic Polarization Effects due to Axion Photon Mixing

    Full text link
    We investigate the effect of axions on the polarization of electromagnetic waves as they propagate through astronomical distances. We analyze the change in the dispersion of the electromagnetic wave due to its mixing with axions. We find that this leads to a shift in polarization and turns out to be the dominant effect for a wide range of frequencies. We analyze whether this effect or the decay of photons into axions can explain the large scale anisotropies which have been observed in the polarizations of quasars and radio galaxies. We also comment on the possibility that the axion-photon mixing can explain the dimming of distant supernovae.Comment: 18 pages, 1 figur

    Performance of ewes supplemented with a home-made, grain-based, protein supplement

    Get PDF
    The performance of ewes supplemented throughout the year with a high protein premix compounded with grain to constitute a home-made block was investigated. Consumption of the supplement was greatest in the July to September period, and supplemented sheep were significantly heavier during this period only

    The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles

    Full text link
    In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method

    Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    Get PDF
    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 = 0.15, 0.25 (GeV/c)^2. The results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the 2-gamma exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.Comment: 5 pages, 3 figures, submitted to Physical Review Letters; shortened to meet PRL length limit, clarified some text after referee's comment

    Thermal rates for baryon and anti-baryon production

    Get PDF
    We use a form of the fluctuation-dissipation theorem to derive formulas giving the rate of production of spin-1/2 baryons in terms of the fluctuations of either meson or quark fields. The most general formulas do not assume thermal or chemical equilibrium. When evaluated in a thermal ensemble we find equilibration times on the order of 10 fm/c near the critical temperature in QCD.Comment: 22 pages, 4 tables and 2 figures, REVTe

    Nonfactorizable contributions in B decays to charmonium: the case of BKhcB^- \to K^- h_c

    Full text link
    Nonleptonic BB to charmonium decays generally show deviations from the factorization predictions. For example, the mode BKχc0B^- \to K^- \chi_{c0} has been experimentally observed with sizeable branching fraction while its factorized amplitude vanishes. We investigate the role of rescattering effects mediated by intermediate charmed meson production in this class of decay modes, and consider BKhcB^- \to K^- h_c with hch_c the JPC=1+J^{PC}=1^{+-} cˉc\bar c c meson. Using an effective lagrangian describing interactions of pairs of heavy-light QqˉQ{\bar q} mesons with a quarkonium state, we relate this mode to the analogous mode with χc0\chi_{c0} in the final state. We find B(BKhc){\cal B}(B^- \to K^- h_c) large enough to be measured at the BB factories, so that this decay mode could be used to study the poorly known hch_c.Comment: RevTex, 16 pages, 2 eps figure

    A complete 3D numerical study of the effects of pseudoscalar-photon mixing on quasar polarizations

    Full text link
    We present the results of three-dimensional simulations of quasar polarizations in the presence of pseudoscalar-photon mixing in the intergalactic medium. The intergalactic magnetic field is assumed to be uncorrelated in wave vector space but correlated in real space. Such a field may be obtained if its origin is primordial. Furthermore we assume that the quasars, located at cosmological distances, have negligible initial polarization. In the presence of pseudoscalar-photon mixing we show, through a direct comparison with observations, that this may explain the observed large scale alignments in quasar polarizations within the framework of big bang cosmology. We find that the simulation results give a reasonably good fit to the observed data.Comment: 15 pages, 8 figures, significant changes, to appear in EPJ

    Quantum-nondemolition criteria in traveling-wave second-harmonic generation

    Get PDF
    Using the full nonlinear equations of motion, we calculate the quantum-nondemolition (QND) correlations for the traveling-wave second-harmonic generation. We find that, after a short interaction length, these are qualitatively different from results calculated previously using a linearized fluctuation analysis. We demonstrate that, although individual QND criteria can be very good in certain regions, there is no region where all three of the standard criteria are perfect, as has previously been claimed. We also show that only the amplitude quadrature of the output field can be considered as a QND quantity, with the phase quadrature not satisfying all the criteria
    corecore