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Quantum-nondemolition criteria in traveling-wave second-harmonic generation
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Using the full nonlinear equations of motion, we calculate the quantum-nondemolition~QND! correlations
for the traveling-wave second-harmonic generation. We find that, after a short interaction length, these are
qualitatively different from results calculated previously using a linearized fluctuation analysis. We demon-
strate that, although individual QND criteria can be very good in certain regions, there is no region where all
three of the standard criteria are perfect, as has previously been claimed. We also show that only the amplitude
quadrature of the output field can be considered as a QND quantity, with the phase quadrature not satisfying all
the criteria.

PACS number~s!: 42.50.Dv, 42.50.Lc, 42.65.2k, 42.65.Ky
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I. INTRODUCTION

Traveling-wave second-harmonic generation is one of
simplest nonlinear optical processes. The classical solut
for the generated fields are well-known@1# and have been
used as the basis of a linearized fluctuation analysis to
culate both the amount of squeezing present in, and
quantum-nondemolition~QND! correlations of the outpu
fields@2–4#. However, a full nonlinear treatment of the pro
lem, which must be done numerically, shows that even
classical solutions for the mean values of the fields are
accurate for arbitrary interaction length, with quantum no
playing a significant role in the dynamics@5,6#. Intracavity
second-harmonic generation has previously been propose
a candidate for a QND scheme@7#, although most proposal
utilizing x (2) media are concerned with the twin beam pro
erties of parametric down-conversion@8#.

Quantum-nondemolition measurements were origina
proposed as a means of either obtaining information from
signal without degradation of the same signal, or of prep
ing a system in a known quantum state@9–14#. A problem
with any standard measurement is that the measured qua
is perturbed, changing the quantity in an undetermined w
by the addition of aback-actionnoise. The basic idea of
QND measurement is that this noise is added to a com
mentary observable, while the act of measurement prep
the system in a known quantum state, so that the presen
any perturbation can be detected by a subsequent mea
ment. Three criteria have been developed that can be us
establish the worth of any device as a QND measurem
scheme@15#, along with slightly different criteria that are
more closely related to experiment@16,17#. Unfortunately,
two of the latter criteria are only calculable in a lineariz
analysis, which has previously been shown to have limi
validity for the present scheme. A general review
quantum-optical QND experiments along with an analysis
results using the linearized criteria shows that bothx (2) and
x (3) processes, as well as the interaction of light with co
atoms, can be used as QND systems@8#. Of these possibili-
ties, the interaction of light with cold rubidium atoms in
magneto-optical trap has given the best results@18#.
1050-2947/2000/62~2!/023802~7!/$15.00 62 0238
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II. THEORETICAL MODEL

Second-harmonic generation is an optical process usin
nonlinearx (2) crystal, in which a pump field at frequencyv
produces a harmonic field at frequency 2v. We consider
here only the case of perfect phase matching between the
fields, with both fields considered as plane waves. In
traveling-wave regime, we can write an interaction Ham
tonian as

H5
i\k

2
@ â† 2b̂2â2b̂†#, ~1!

whereâ and b̂ are the annihilation operators for photons
frequenciesv and 2v, respectively, at positionz inside the
nonlinear crystal, andk represents the effective strength
the nonlinear interaction between the two modes. The op
tor equations for the system are found as

dâ

dz
5kâ†b̂,

~2!

db̂

dz
52

k

2
â2,

for which no analytical solution is known.
Earlier analyses of the quantum properties of the gen

ated fields in pure second-harmonic generation have re
on an either an iteration to second order in the interact
length @19#, or linearization about the classical solution
@2–4#, which are found by treating the operators in Eq. 2
c numbers. The first of these methods is only acceptable
long asz remains very small, while the second depends
the fluctuations being small compared to the expectation
ues of the operators. As the fluctuations in the phase qua
tures are predicted to increase very rapidly, while the fun
mental field is predicted to decrease monotonica
linearization is also of limited validity. In a previous analys
@5#, we have shown that the classical solutions for the m
fields depart dramatically from the numerical quantum so
©2000 The American Physical Society02-1
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tions at the point where the quantum noise begins to
crease, graphically demonstrating the limitations to a line
ized analysis of this system.

It is therefore also of interest to investigate the full no
linear system with regard to the QND measurement crite
of Hollandet al. @15#, which must also be done numericall
There are two possibilities for performing the numeric
computations: either the positive-P @20# or the Wigner rep-
resentation@21,22#. These representations are common
used in quantum optical problems to represent opera
valued quantities in terms ofc numbers. Our present syste
can be mapped exactly onto positive-P equations, via the
master and Fokker-Planck equations

da

dz
5ka†b1Akbh1~z!,

da†

dz
5kab†1Akb†h2~z!,

~3!
db

dz
52

k

2
a2,

db†

dz
52

k

2
a† 2.

In the above system of equations, there is a correspond
between@ â,â†,b̂,b̂†# and @a,a†,b,b†#, although the latter
arec-number variables that are not complex conjugate exc
in the mean of a large number of stochastic trajectories. T
is due to the independence of the real noise terms, wh
have the propertiesh1(z)5h2(z)50 and h i(z)h j (z8)
5d i j d(z2z8).

A mapping of this system onto the Wigner representat
does not result in a Fokker-Planck equation, as we find th
order terms, which can however, be dropped to result in
same system of equations as is used classically:

da

dz
5ka* b,

~4!
db

dz
52

k

2
a2,

with the difference that the initial conditions for each traje
tory are taken from the Wigner distribution for the inp
states of the light fields. It has been found that for this s
tem, the positive-P and truncated Wigner representatio
give almost identical results for the photon numbers a
quadrature variances, even though the truncation sign
that some higher-order quantum effects are not included@5#.
The main advantage of the Wigner representation is tha
automatically calculates symmetrically ordered opera
products, which are used in the definitions of the correlat
functions. However, in the calculation of the correlati
functions required here, the Wigner representation results
02380
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not as accurate as for photon number and quadrature
ances. Therefore we have decided to present only the re
of the positive-P simulations.

As in previous analyses of this system, we will use
scaled interaction length,j5zkANa(0)/2, whereNa(0) is
the expectation value of the photon number in the fundam
tal entering the crystal. This allows direct comparison w
analytical results obtained in a linearized analysis. For all
quantities calculated, we have assumed an input cohe
state at the fundamental, with a mean value of 106 photons,
and a vacuum at the second harmonic. We should state
that the values ofNa(0) andk used in our simulations are
not particularly physical, with 106 being a very low photon
number and 0.01 being a very high value for the effect
nonlinearity. However, the important physical quantity he
is kANa(0), used in the definition ofj. The values used
have been chosen because we have to simulate the equa
on thez axis, and with a larger value ofNa(0) and a smaller
value ofk, the integration time required becomes unreas
able. A worthwhile physical comparison with our resu
comes from considering recent experiments that rep
'64% conversion efficiency@23,24#. Using the classical so
lution for Na , which is valid in this region, Na(j)
5Na(0)sech2(j), we see thatj'1.1. This means that the
effects we find that differ strongly from the linearized sol
tions will need more effective crystals or higher-power
lasers, or both, than those that have so far been used
second-harmonic generation.

A. Correlation functions

The QND correlations calculated previously for this sy
tem @2# are those developed by Hollandet al. @15#, which
refer to measurement, degradation of the signal field,
state preparation. It is worthwhile noting that other corre
tion functions have been defined@16,17#, which are more
experimentally meaningful, but are not readily applicable
a system that cannot be linearized. As it has previously b
shown that the present system departs strongly from the
havior calculated in a linearized analysis, we have calcula
the correlations of Hollandet al.

Generally, in QND schemes we need a signal field an
probe field, so that measurements on the probe field ca
used to derive information on the signal without perturbi
the signal. The criteria used to evaluate a scheme concer
worth as a measurement device, the degradation of the si
field by measurement of the probe, and the usefulness
state preparation. These criteria are evaluated using sym
trised two-field correlation functions

CAB
2 5

u 1
2 ^AB1BA&2^A&^B&u2

V~A!V~B!
, ~5!

with a value of one signifying perfect performance. In t
present system, it has been proposed that both the qua
tures Xa and Yb @where Xa5a1a† and Yb52 i (b2b†)]
should satisfy the first two criteria as the correlation fun
tions CX

a
outX

a
in

2
(j), CX

b
outX

a
in

2
(j), CY

b
outY

b
in

2
(j), and CY

a
outY

b
in

2
(j)

all go to unity for largej in the linearized analysis.
2-2
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QUANTUM-NONDEMOLITION CRITERIA IN . . . PHYSICAL REVIEW A 62 023802
The third criterion, on state preparation, has also b
claimed to be fulfilled byXa andYb , as long asYb can be
attenuated without noise, and is characterized by the co
tional variances

V~Xa
outuXb

out!5V@Xa~j!#$12CX
a
outX

b
out

2
%,

~6!
V~Yb

outuYa
out!5V@Yb~j!#$12CY

a
outY

b
out

2
%.

Our purpose is to evaluate these correlations in the full n
linear treatment, to discover if and where the system m
still be useful as a QND device.

B. Symmetrization

The calculation of the correlation functions of outp
fields is relatively simple, as in, for example,CX

a
outX

b
out

2
, be-

cause all the operator products involved are independen
ordering. This is not the case with the input-output corre
tions. To calculate these, we have two choices. We can e
use the Wigner representation at the expense of losing s
information, or we can calculate average multitime comm
tators to allow us to normally order all operator products a
use the positive-P representation.

To find the average multipoint commutators, we not
that they can be calculated using Kubo’s famous relation
the linear response function@25–27#. Namely, we begin by
adding an interaction with complexc-number sources to th
system Hamiltonian

He f f→He f f1E dz@sa* ~z!â~z!1sa~z!â†~z!1sb* ~z!b̂~z!

1sb~z!b̂†~z!#. ~7!

Then, for an arbitrary operatorÂ(z) ~assumingz.0),

d^Â~z!&
dsa~0!

U
0

52
i

\
^@Â~z!,â†~0!#&,

d^Â~z!&

dsa* ~0!
U

0

52
i

\
^@Â~z!,â~0!#&,

~8!
d^Â~z!&
dsb~0!

U
0

52
i

\
^@Â~z!,b̂†~0!#&,

d^Â~z!&

dsb* ~0!
U

0

52
i

\
^@Â~z!,b̂~0!#&,

where ‘‘u0’’ indicates that all functional derivatives are take
with zero sources. SettingÂ5â, â†, b̂, b̂†, respectively, we
express all the commutators needed as the linear resp
functions of the system. In turn, these functions are ea
calculated numerically. It is straightforward to show that u
der the transformation~7!, Eqs.~3! become
02380
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da

dz
5ka†b1Akbh1~z!2 isa~z!,

da†

dz
5kab†1Akb†h2~z!1 isa

†~z!,

~9!
db

dz
52

k

2
a22 isb~z!,

db†

dz
52

k

2
a† 21 isb

†~z!.

In the above,sa
†5sa* andsb

†5sb* . However, when calculat-
ing the derivatives, we may assume thatsa , sa

† , sb , sb
† are

independent quantities. Furthermore, a derivatived/dsa(0)
~say! means physically the system’s reaction to the de
sourcesa(z)}d(0). That is, the derivatives in Eq.~8! are in
fact taken by the variable initial conditions,a(0)→a(0)
1da(0), etc. Finally,

^@Â~z!,â†~0!#&5
]^Â~z!&
]a~0!

U
0

, ~10!

^@Â~z!,â~0!#&52
]^Â~z!&

]a†~0!
U

0

, ~11!

^@Â~z!,b̂†~0!#&5
]^Â~z!&
]b~0!

U
0

, ~12!

^@Â~z!,b̂~0!#&52
]^Â~z!&

]b†~0!
U

0

. ~13!

This clearly results in correct commutators atz50, e.g.,

^@ â~0!,â†~0!#&5
]a~0!

]a~0!
51, ~14!

^@ â†~0!,â~0!#&52
]a†~0!

]a†~0!
521, ~15!

^@ â~0!,â~0!#&52
]a~0!

]a†~0!
50, ~16!

etc.
By numerical experiments, we found that assumi

da(0), da†(0), db(0), db†(0) to be independent rea
quantities resulted in the sampling noise being dramatic
reduced compared to that forda†(0)5da* (0) and
db†(0)5db* (0). For smaller lengths, when the samplin
noise is relatively small, both ways of calculating commu
tors were shown to lead to identical results.

Having calculated all the commutators numerically, w
write the covariances in symmetrized form, so that, for e
ample,
2-3
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^Xb
out ,Xa

in&symm5^b~j!a~0!1a†~0!b~j!1a†~0!b†~j!

1b†~j!a~0!&1
1

2
^@b~j!,a†~0!#

1@b†~j!,a†~0!#2@b~j!,a~0!#

2@b†~j!,a~0!#&2^Xb
out&^Xa

in&, ~17!

and similarly for the other covariances.

III. RESULTS

The correlation functions have all been calculated us
between 53105 and 108 stochastic trajectories, dependin
on what was necessary to achieve good convergence.
used an iterative Euler algorithm, calculating the trajector
using Itô calculus, which in this case proved to be mo
stable than Stratonovich@28#. As expected, we find that th
correlations are not as good in the full nonlinear treatme
which predicts that all are perfect for large enoughj, but we
also find other interesting behavior.

Beginning with meaurement quality, we wish to see h
much information can be obtained about the input sig
from a measurement of the probe output. It has been
posed thatXb

out and Ya
out can be used as probes to give i

formation on Xa
in and Yb

in , respectively. In the linearized
analysis, the correlations between these quantities are fo
to be equal and perfect for largej. However, we can see in
Fig. 1 thatCX

b
outX

a
in

2
(j) andCY

a
outY

b
in

2
(j) are no longer found to

be equal after an initial short interaction length, but th
CY

a
outY

b
in

2
(j) is still almost perfect over a finite range. Th

utility of this for QND measurement is somewhat dubiou
however, as we already know the input of modeb is a

FIG. 1. The correlationsCX
b
outX

a
in

2 (j) and CY
a
outY

b
in

2 (j), which

quantify the worth of the scheme as a measurement device. In
linearized analysis, these two are equal and go to unity for largj.
Note thatj @5zkANa(0)/2# is a dimensionless interaction leng
and all the values plotted are also dimensionless.
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vacuum state in pure second-harmonic generation. The
relation betweenXb

out and Xa
in is nearly 90% over a smal

length, but then rapidly vanishes as the quantum noise in
Xa quadrature rapidly increases, as shown below in Fig
This is at the same point thatNa(j) begins to revive, as see
below in Fig. 5.

The second criterion, that of signal degradation, quanti
the ability of the scheme to isolate quantum noise induced
the measurement scheme from the observable of interest
is illustrated byCX

a
outX

a
in

2
(j) andCY

b
outY

b
in

2
(j) in Fig. 2. We see

again that the correlations are not equal for the phase
amplitude quadratures, with the phase quadrature correla
becoming almost perfect forj'7, although this is again no
particularly interesting. The reason for the sharp valley
CY

b
outY

b
in

2
(j) aroundj59 is that these two quadratures b

come anti-correlated at this point, asNb reaches a local mini-
mum and starts to increase again. It is possible that, at
point, there may be two quadratures exhibiting better co
lations, with the anticorrelation being due to a quadrat
rotation effect.

The output-output correlation functionsCX
a
outX

b
out

2
(j) and

CY
a
outY

b
out

2
(j), used to calculate the conditional variances th

quantify the third criterion of state preparation, are shown
Fig. 3. These are again different and the correlation for
amplitude quadratures, by vanishing atj'5, shows that the
Xa and Xb quadratures actually become anticorrelated a
this point. Before this point,̂Xa& is positive and decreasing
while ^Xb& is negative and decreasing. After this point,^Xa&
continues to decrease while^Xb& starts to increase, eventu
ally becoming positive. The fact thatNa(j) experiences a
revival while ^Xa& continues to decrease is because the c
jugate quadraturêYa& has grown, something again not pr
dicted by the linearized analysis. The conditional varian
themselves are shown in Fig. 4, from which we can see

he

FIG. 2. The correlationsCX
a
outX

a
in

2 (j) and CY
b
outY

b
in

2 (j), which

quantify the degradation of the signal field. In the linearized ana
sis, these two are also equal and go to unity for largej.
2-4
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QUANTUM-NONDEMOLITION CRITERIA IN . . . PHYSICAL REVIEW A 62 023802
the phase quadrature never satisfies the requirement for
preparation, while the amplitude quadrature satisfies it v
well over a reasonable range of interaction length. It is ho
ever, instructive to examine the definition of the condition
variances given in Eq.~6!. It is normally assumed that th
conditional variance can go to zero when the appropr
correlation goes to one@15#. However, in this case
V(Xa

outuXb
out) is very small even in the region wher

CX
a
outX

b
out

2
vanishes, due toV(Xa) being very small in this

region. Hence, we do not obtain good state preparation
cause of a strong correlation, but because the signal outp
very highly squeezed. On the other hand, we find a reas

FIG. 3. The correlationsCX
a
outX

b
out

2 (j) and CY
a
outY

b
out

2 (j), used to

calculate the conditional variances that quantify state prepara
In the linearized analysis, these two are also equal and go to u
for largej.

FIG. 4. The conditional variancesV(Xa
outuXb

out) and
V(Yb

outuYa
out), which quantify state preparation. In the lineariz

analysis, the first of these goes to zero and the second goes to
for largej.
02380
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able correlation for theY quadratures, but a large covarian
due to large excess noise, so thatYa does not satisfy the
criterion for state preparation.

It is useful to consider the weighted sum of the thr
criteria,

SX5 1
2 @CX

b
outX

a
in

2
1CX

a
outX

a
in

2
2V~Xa

outuXb
out!#, ~18!

with a similar definition for the phase quadrature corre
tions. This sum will have a value of one when all thr
criteria are perfectly satisfied, signifying an ideal QN
scheme. For our parameters, we find thatSX max'0.7, while
SY max'0.1. This demonstrates thatXa is in fact a QND
quantity, but thatYb does not qualify. Even thoughYb sat-
isfies the first two of the criteria better than doesXa , it falls
strongly into the classical region (>1) for state preparation
In the classification scheme used by Rochet al., Yb qualifies
as a quantum-optical tap.

Considering Fig. 5 and Fig. 6, we can see that the in
esting X-quadrature correlations are generally at their b
before the point aroundj'6, where the noise in theXa
quadrature has begun to increase and the noise in theXb
quadrature is already well above the coherent-state le
This noise increases as the process within the crystal cha
from harmonic generation to down-conversion, which is
least initially a spontaneous process. It is therefore not s
prising that, as shown in Fig. 7, the overall performance
the X quadratures decreases afterj'5.

IV. CONCLUSION

We have shown that the behavior of this system in ter
of the standard QND criteria is quite different from that pr
dicted by a linearized analysis, with nonlinear quantum
fects playing an important role. In this case, not even
truncated Wigner-representation equations give correct
sults, once again demonstrating the dangers of unjusti

n.
ity

wo

FIG. 5. The dynamics of the field intensities with increasi
interaction length. In the linearized results, there is no revival
Na , which goes monotonically to zero.
2-5
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linearization and truncation procedures.
The phase quadrature of the harmonic, which had b

previously proposed as a QND quantity, fails on the grou
of state preparation. The amplitude quadrature of the fun
mental, however, satisfies the state preparation criterion
well, although its behavior for measurement quality and s
nal degradation is inferior to the phase quadrature.

We have also shown that the performance of the dev
does not continue to improve with increasing interact
length, but actually worsens after a certain optimum leng
This is the same region where the noise in the system
been found to increase in a previous analysis of the squ
ing properties, due to the partially spontaneous nature of
down-conversion process as the fundamental revives. T
is, however, a significant region in the approximate rang
<j<5 whereXa meets all the criteria, suggesting that

FIG. 6. The development of the amplitude quadrature varian
The linearized analysis gives asymptotic values ofV(Xa)50 and
V(Xb)50.5. The amplitude quadrature of the harmonic begins
develop excess noise over the linearized solution atj'4.
rs

S.

n

en
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genuine QND measurement can be performed using this
tem.

The true QND region of this system should be attaina
with either very high power lasers or more effective crysta
As long as the interaction region is smaller than the Rayle
length of the light beams, our analysis in terms of pla
waves should retain validity. It is also possible that in so
regions there may be different quadratures displaying g
correlations, which is a topic for future investigation.
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