1,916 research outputs found

    Physicochemical studies on polymerisation : The polymerisation of methyl acrylate

    Get PDF
    Abstract Not Provided

    Evaluation of sanguineous and crystalloid cardioplegic solutions during total heart-lung bypass in dogs

    Get PDF
    Twenty-four mongrel dogs were subjected to sanguineous and crystalloid cardioplegia for a period of thirty minutes at 20°C and 25°C systemic hypothermia during cardiopulmonary bypass. Cardioplegic solutions were administered at 4°C to induce cardioplegia. Physiological functions of the myocardium revealed that the cardiac function returned to normal sinus rhythm without any loss when blood cardioplegic solution was used at both hypothermic temperatures. The time taken for cardioplegia and cardiac electrical quiescence was achieved earlier at 20°C. Animals in sanguineous cardioplegic group revealed better functional return and revival of cardiac musculature in terms of lesser applications of defibrillator, lesser requirement of inotropic support and early cardiac contraction. This study revealed that sanguineous cardioplegic solution at a systemic temperature of 20°C was found to afford better myocardial protection during an arrest period of 30 minutes

    Plans for a Neutron EDM Experiment at SNS

    Get PDF
    The electric dipole moment of the neutron, leptons, and atoms provide a unique window to Physics Beyond the Standard Model. We are currently developing a new neutron EDM experiment (the nEDM Experiment). This experiment, which will be run at the 8.9 A Neutron Line at the Fundamental Neutron Physics Beamline (FNPB) at the Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory, will search for the neutron EDM with a sensitivity two orders of magnitude better than the present limit. In this paper, the motivation for the experiment, the experimental method, and the present status of the experiment are discussed.Comment: 9 Pages, 4 Figures, submitted to the proceedings of the Second Meeting of the APS Topical Group on Hadronic Physics, Nashville, TN, October 22-24, 200

    No detectable radio emission from the magnetar-like pulsar in Kes 75

    Get PDF
    The rotation-powered pulsar PSR J1846-0258 in the supernova remnant Kes 75 was recently shown to have exhibited magnetar-like X-ray bursts in mid-2006. Radio emission has not yet been observed from this source, but other magnetar-like sources have exhibited transient radio emission following X-ray bursts. We report on a deep 1.9 GHz radio observation of PSR J1846-0258 with the 100-m Green Bank Telescope in late 2007 designed to search for radio pulsations or bursts from this target. We have also analyzed three shorter serendipitous 1.4 GHz radio observations of the source taken with the 64-m Parkes telescope during the 2006 bursting period. We detected no radio emission from PSR J1846-0258 in either the Green Bank or Parkes datasets. We place an upper limit of 4.9 \mu Jy on coherent pulsed emission from PSR J1846-0258 based on the 2007 November 2 observation, and an upper limit of 27 \mu Jy around the time of the X-ray bursts. Serendipitously, we observed radio pulses from the nearby RRAT J1846-02, and place a 3\sigma confidence level upper limit on its period derivative of 1.7 * 10^{-13}, implying its surface dipole magnetic field is less than 2.6 * 10^{13} G.Comment: 15 pages, 2 figures, submitted to Ap

    Comment on ``Measurement of the 3^3He mass diffusion coefficient in superfluid 4^4He over the 0.45--0.95 K temperature range

    Full text link
    The role of 3He-3He collisions in our diffusion experiment is addressed and shown to not be relevant to the measurement of 3He diffusion against phonons in superfluid helium.Comment: Two pages, in Europhysics Letters forma

    Macrophage transcriptional responses following in vitro infection with a highly virulent African swine fever virus isolate

    Get PDF
    We used a porcine microarray containing 2,880 cDNAs to investigate the response of macrophages to infection by a virulent African swine fever virus (ASFV) isolate, Malawi LIL20/1. One hundred twenty-five targets were found to be significantly altered at either or both 4 h and 16 h postinfection compared with targets after mock infection. These targets were assigned into three groups according to their temporal expression profiles. Eighty-six targets showed increased expression levels at 4 h postinfection but returned to expression levels similar to those in mock-infected cells at 16 h postinfection. These encoded several proinflammatory cytokines and chemokines, surface proteins, and proteins involved in cell signaling and trafficking pathways. Thirty-four targets showed increased expression levels at 16 h postinfection compared to levels at 4 h postinfection and in mock-infected cells. One host gene showed increased expression levels at both 4 and 16 h postinfection compared to levels in mock-infected cells. The microarray results were validated for 12 selected genes by quantitative real-time PCR. Levels of protein expression and secretion were measured for two proinflammatory cytokines, interleukin 1β and tumor necrosis factor alpha, during a time course of infection with either the virulent Malawi LIL20/1 isolate or the OUR T88/3 nonpathogenic isolate. The results revealed differences between these two ASFV isolates in the amounts of these cytokines secreted from infected cells

    Use of non-Gaussian time-of-flight kernels for image reconstruction of Monte Carlo simulated data of ultra-fast PET scanners

    Get PDF
    Introduction: Time-of-flight (TOF) positron emission tomography (PET) scanners can provide significant benefits by improving the noise properties of reconstructed images. In order to achieve this, the timing response of the scanner needs to be modelled as part of the reconstruction process. This is currently achieved using Gaussian TOF kernels. However, the timing measurements do not necessarily follow a Gaussian distribution. In ultra-fast timing resolutions, the depth of interaction of the γ-photon and the photon travel spread (PTS) in the crystal volume become increasingly significant factors for the timing performance. The PTS of a single photon can be approximated better by a truncated exponential distribution. Therefore, we computed the corresponding TOF kernel as a modified Laplace distribution for long crystals. The obtained (CTR) kernels could be more appropriate to model the joint probability of the two in-coincidenceγ-photons. In this paper, we investigate the impact of using a CTR kernel vs. Gaussian kernels in TOF reconstruction using Monte Carlo generated data. Materials and methods: The geometry and physics of a PET scanner with two timing configurations, (a) idealised timing resolution, in which only the PTS contributed in the CTR, and (b) with a range of ultra-fast timings, were simulated. In order to assess the role of the crystal thickness, different crystal lengths were considered. The evaluation took place in terms of Kullback–Leibler (K-L) distance between the proposed model and the simulated timing response, contrast recovery (CRC) and spatial resolution. The reconstructions were performed using STIR image reconstruction toolbox. Results: Results for the idealised scanner showed that the CTR kernel was in excellent agreement with the simulated time differences. In terms of K-L distance outperformed the a fitted normal distribution for all tested crystal sizes. In the case of the ultra-fast configurations, a convolution kernel between the CTR and a Gaussian showed the best agreement with the simulated data below 40 ps timing resolution. In terms of CRC, the CTR kernel demonstrated improvements, with values that ranged up to 3.8% better CRC for the thickest crystal. In terms of spatial resolution, evaluated at the 60th iteration, the use of CTR kernel showed a modest improvement of the peek-to-valley ratios up to 1% for the 10-mm crystal, while for larger crystals, a clear trend was not observed. In addition, we showed that edge artefacts can appear in the reconstructed images when the timing kernel used for the reconstruction is not carefully optimised. Further iterations, can help improve the edge artefacts

    Discovery and Follow-up of Rotating Radio Transients with the Green Bank and LOFAR Telescopes

    Get PDF
    We have discovered 21 Rotating Radio Transients (RRATs) in data from the Green Bank Telescope (GBT) 350-MHz Drift-scan and the Green Bank North Celestial Cap pulsar surveys using a new candidate sifting algorithm. RRATs are pulsars with sporadic emission that are detected through their bright single pulses rather than Fourier domain searches. We have developed {\tt RRATtrap}, a single-pulse sifting algorithm that can be integrated into pulsar survey data analysis pipelines in order to find RRATs and Fast Radio Bursts. We have conducted follow-up observations of our newly discovered sources at several radio frequencies using the GBT and Low Frequency Array (LOFAR), yielding improved positions and measurements of their periods, dispersion measures, and burst rates, as well as phase-coherent timing solutions for four of them. The new RRATs have dispersion measures (DMs) ranging from 15 to 97 pc cm3^{-3}, periods of 240 ms to 3.4 s, and estimated burst rates of 20 to 400 pulses hr1^{-1} at 350 MHz. We use this new sample of RRATs to perform statistical comparisons between RRATs and canonical pulsars in order to shed light on the relationship between the two populations. We find that the DM and spatial distributions of the RRATs agree with those of the pulsars found in the same survey. We find evidence that slower pulsars (i.e. P>200P>200 ms) are preferentially more likely to emit bright single pulses than are faster pulsars (P<200P<200 ms), although this conclusion is tentative. Our results are consistent with the proposed link between RRATs, transient pulsars, and canonical pulsars as sources in various parts of the pulse activity spectrum.Comment: 18 pages, 13 figures, 5 tables, published in Ap

    Measurement of the 3He mass diffusion coefficient in superfluid 4He over the 0.45-0.95 K temperature range

    Full text link
    We have measured the mass diffusion coefficient D of 3He in superfluid 4He at temperatures lower than were previously possible. The experimental technique utilizes scintillation light produced when neutron react with 3He nuclei, and allows measurement of the 3He density integrated along the trajectory of a well-defined neutron beam. By measuring the change in 3He density near a heater as a function of applied heat current, we are able to infer values of D with 20% accuracy. At temperatures below 0.7 K and for concentrations of order 10^{-4} we find D=(2.0+2.4-1.2)T^-(6.5 -/+ 1.2) cm^2/s, in agreement with a theoretical approximation.Comment: 8 pages, 5 figures. Submitted to Europhysics Letters and prepared in that journal's forma
    corecore