314 research outputs found

    Preparation and ferroelectric properties of (124)-oriented SrBi4Ti4O15 ferroelectric thin film on (110)-oriented LaNiO3 electrode

    Full text link
    A (124)-oriented SrBi4Ti4O15 (SBTi) ferroelectric thin film with high volume fraction of {\alpha}SBTi(124)=97% was obtained using a metal organic decomposition process on SiO2/Si substrate coated by (110)-oriented LaNiO3 (LNO) thin film. The remanent polarization and coercive field for (124)-oriented SBTi film are 12.1 {\mu}C/cm2 and 74 kV/cm, respectively. No evident fatigue of (124)-oriented SBTi thin film can be observed after 1{\times}10e9 switching cycles. Besides, the (124)-oriented SBTi film can be uniformly polarized over large areas using a piezoelectric-mode atomic force microscope. Considering that the annealing temperature was 650{\deg}C and the thickness of each deposited layer was merely 30 nm, a long-range epitaxial relationship between SBTi(124) and LNO(110) facets was proposed. The epitaxial relationship was demonstrated based on the crystal structures of SBTi and LNO.Comment: 11 pages, 4 figures, published in Journal of Materials Science: Materials in Electronics (JMSE), 19 (2008), 1031-103

    Machine Learning Framework to Identify Individuals at Risk of Rapid Progression of Coronary Atherosclerosis : From the PARADIGM Registry

    Get PDF
    Background Rapid coronary plaque progression (RPP) is associated with incident cardiovascular events. To date, no method exists for the identification of individuals at risk of RPP at a single point in time. This study integrated coronary computed tomography angiography-determined qualitative and quantitative plaque features within a machine learning (ML) framework to determine its performance for predicting RPP. Methods and Results Qualitative and quantitative coronary computed tomography angiography plaque characterization was performed in 1083 patients who underwent serial coronary computed tomography angiography from the PARADIGM (Progression of Atherosclerotic Plaque Determined by Computed Tomographic Angiography Imaging) registry. RPP was defined as an annual progression of percentage atheroma volume 651.0%. We employed the following ML models: model 1, clinical variables; model 2, model 1 plus qualitative plaque features; model 3, model 2 plus quantitative plaque features. ML models were compared with the atherosclerotic cardiovascular disease risk score, Duke coronary artery disease score, and a logistic regression statistical model. 224 patients (21%) were identified as RPP. Feature selection in ML identifies that quantitative computed tomography variables were higher-ranking features, followed by qualitative computed tomography variables and clinical/laboratory variables. ML model 3 exhibited the highest discriminatory performance to identify individuals who would experience RPP when compared with atherosclerotic cardiovascular disease risk score, the other ML models, and the statistical model (area under the receiver operating characteristic curve in ML model 3, 0.83 [95% CI 0.78-0.89], versus atherosclerotic cardiovascular disease risk score, 0.60 [0.52-0.67]; Duke coronary artery disease score, 0.74 [0.68-0.79]; ML model 1, 0.62 [0.55-0.69]; ML model 2, 0.73 [0.67-0.80]; all P<0.001; statistical model, 0.81 [0.75-0.87], P=0.128). Conclusions Based on a ML framework, quantitative atherosclerosis characterization has been shown to be the most important feature when compared with clinical, laboratory, and qualitative measures in identifying patients at risk of RPP
    corecore