187 research outputs found
Cytotoxicity of spermine oxidation products to multidrug resistant melanoma M14 ADR2 cells: Sensitization by the MDL 72527 lysosomotropic compound
It has been confirmed that multidrug resistant (MDR) human melanoma cells are more sensitive than their wild-type counterparts to H(2)O(2) and aldehydes, the products of bovine serum amine oxidase (BSAO)-catalyzed oxidation of spermine. The metabolites formed by BSAO and spermine are more toxic than exogenous H(2)O(2) and acrolein, even thou-h their concentration is lower during the initial phase of incubation due to their more gradual release than the exogenous products. Both wild-type and MDR cells, after pre-treatment with MDL 72527, an inactivator of polyamine oxidase and a lysosomotropic compound, show to be sensitized to subsequent exposure to BSAO/spermine. Evidence of ultrastructural aberrations and acridine orange release from lysosomes is presented in this work that is in favor of the permeabilization of the lysosomal membrane as the major cause of sensitization by MDL 72527. Owing to its lysosomotropic effect, pre-treatment with MDL 72527 amplifies the ability of the metabolites formed from spermine by oxidative deamination to induce cell death. Since it is conceivable that combined treatment with a lysosomotropic compound and BSAO/spermine would be effective against tumor cells, it is of interest to search for such novel compounds, which might be promising for application in a therapeutic setting
Tyrosine phosphatase activity in mitochondria: presence of Shp-2 phosphatase in mitochondria
Tyrosine phosphorylation by unidentified enzymes has been observed in mitochondria, with recent evidence indicating that non-receptorial tyrosine kinases belonging to the Src family, which represent key players in several transduction pathways, are constitutively present in mitochondria. The extent of protein phosphorylation reflects a coordination balance between the activities of specific kinases and phophatases. The present study demonstrates that purified rat brain mitochondria possess endogenous tyrosine phosphatase activity. Mitochondrial phosphatases were found to be capable of dephosphorylating different exogenous substrates, including paranitrophenylphosphate, P-32-poly(Glu-Tyr)(4:1) and P-32-angiotensin. These activities are strongly inhibited by peroxovanadate, a well-known inhibitor of tyrosine phosphatases, but not by inhibitors of alkali or Ser/Thr phosphatases, and mainly take place in the intermembrane space and outer mitochondrial membrane. Using a combination of approaches, we identified the tyrosine phosphatase Shp-2 in mitochondria. Shp-2 plays a crucial role in a number of intracellular signalling cascades and is probably involved in several human diseases. It thus represents the first tyrosine phosphatase shown to be present in mitochondria
Characterization of a clonal human colon adenocarcinoma line intrinsically resistant to doxorubicin.
Intrinsic low-level resistance to anti-cancer drugs is a major problem in the treatment of gastrointestinal malignancies. To address the problem presented by intrinsically resistant tumours, we have isolated two monoclonal lines from LoVo human colon adenocarcinoma cells: LoVo/C7, which is intrinsically resistant to doxorubicin (DOX); and LoVo/C5, which shows the same resistance index for DOX as the mixed parental cell population. For comparison, we have included in the study a LoVo-resistant line selected by continuous exposure to DOX and expressing a typical multidrug resistant (MDR) phenotype. In these cell lines we have studied the expression and/or activity of a number of proteins, including P-glycoprotein 170 (P-gp), multidrug resistance-associated protein (MRP), lung resistance-related protein (LRP), glutathione (GSH)-dependent enzymes and protein kinase C (PKC) isoforms, which have been implicated in anti-cancer drug resistance. Intracellular DOX distribution has been assessed by confocal microscopy. The results of the present study indicate that resistance in LoVo/C7 cells cannot be attributed to alterations in P-gp, LRP or GSH/GSH-dependent enzyme levels. Increased expression of MRP, accompanied by alterations in the subcellular distribution of DOX, has been observed in LoVo/C7 cells; changes in PKC isoform pattern have been detected in both intrinsically and pharmacologically resistant cells
Melanoma Chemotherapy Leads to the Selection of ABCB5-Expressing Cells
Metastatic melanoma is the most aggressive skin cancer. Recently, phenotypically distinct subpopulations of tumor cells were identified. Among them, ABCB5-expressing cells were proposed to display an enhanced tumorigenicity with stem cell-like properties. In addition, ABCB5+ cells are thought to participate to chemoresistance through a potential efflux function of ABCB5. Nevertheless, the fate of these cells upon drugs that are used in melanoma chemotherapy remains to be clarified. Here we explored the effect of anti-melanoma treatments on the ABCB5-expressing cells. Using a melanoma xenograft model (WM266-4), we observed in vivo that ABCB5-expressing cells are enriched after a temozolomide treatment that induces a significant tumor regression. These results were further confirmed in a preliminary study conducted on clinical samples from patients that received dacarbazine. In vitro, we showed that ABCB5-expressing cells selectively survive when exposed to dacarbazine, the reference treatment of metastatic melanoma, but also to vemurafenib, a new inhibitor of the mutated kinase V600E BRAF and other various chemotherapeutic drugs. Our results show that anti-melanoma chemotherapy might participate to the chemoresistance acquisition by selecting tumor cell subpopulations expressing ABCB5. This is of particular importance in understanding the relapses observed after anti-melanoma treatments and reinforces the interest of ABCB5 and ABCB5-expressing cells as potential therapeutic targets in melanoma
New Strategy for Rapid Diagnosis and Characterization of Fungal Infections: The Example of Corneal Scrapings
PURPOSE: The prognosis of people infected with Fungi especially immunocompromised depends on rapid and accurate diagnosis to capitalize on time administration of specific treatments. However, cultures produce false negative results and nucleic-acid amplification techniques require complex post-amplification procedures to differentiate relevant fungal types. The objective of this work was to develop a new diagnostic strategy based on real-time polymerase-chain reaction high-resolution melting analysis (PCR-HRM) that a) detects yeasts and filamentous Fungi, b) differentiates yeasts from filamentous Fungi, and c) discriminates among relevant species of yeasts. METHODS: PCR-HRM detection limits and specificity were assessed with a) isolated strains; b) human blood samples experimentally infected with Fungi; c) blood experimentally infected with other infectious agents; d) corneal scrapings from patients with suspected fungal keratitis (culture positive and negative) and e) scrapings from patients with suspected bacterial, viral or Acanthamoeba infections. The DNAs were extracted and mixed with primers diluted in the MeltDoctor® HRM Master Mix in 2 tubes, the first for yeasts, containing the forward primer CandUn (5'CATGCCTGTTTGAGCGTC) and the reverse primer FungUn (5'TCCTCCGCTT ATTGATATGCT) and the second for filamentous Fungi, containing the forward primer FilamUn (5'TGCCTGTCCGAGCGTCAT) and FungUn. Molecular probes were not necessary. The yields of DNA extraction and the PCR inhibitors were systematically monitored. RESULTS: PCR-HRM detected 0.1 Colony Forming Units (CFU)/µl of yeasts and filamentous Fungi, differentiated filamentous Fungi from yeasts and discriminated among relevant species of yeasts. PCR-HRM performances were higher than haemoculture and sensitivity and specificity was 100% for culture positive samples, detecting and characterizing Fungi in 7 out 10 culture negative suspected fungal keratitis. CONCLUSIONS: PCR-HRM appears as a new, sensitive, specific and inexpensive test that detects Fungi and differentiates filamentous Fungi from yeasts. It allows direct fungal detection from clinical samples and experimentally infected blood in less than 2.30 h after DNA extraction
Predicting drug pharmacokinetics and effect in vascularized tumors using computer simulation
In this paper, we investigate the pharmacokinetics and effect of doxorubicin and cisplatin in vascularized tumors through two-dimensional simulations. We take into account especially vascular and morphological heterogeneity as well as cellular and lesion-level pharmacokinetic determinants like P-glycoprotein (Pgp) efflux and cell density. To do this we construct a multi-compartment PKPD model calibrated from published experimental data and simulate 2-h bolus administrations followed by 18-h drug washout. Our results show that lesion-scale drug and nutrient distribution may significantly impact therapeutic efficacy and should be considered as carefully as genetic determinants modulating, for example, the production of multidrug-resistance protein or topoisomerase II. We visualize and rigorously quantify distributions of nutrient, drug, and resulting cell inhibition. A main result is the existence of significant heterogeneity in all three, yielding poor inhibition in a large fraction of the lesion, and commensurately increased serum drug concentration necessary for an average 50% inhibition throughout the lesion (the IC50 concentration). For doxorubicin the effect of hypoxia and hypoglycemia (“nutrient effect”) is isolated and shown to further increase cell inhibition heterogeneity and double the IC50, both undesirable. We also show how the therapeutic effectiveness of doxorubicin penetration therapy depends upon other determinants affecting drug distribution, such as cellular efflux and density, offering some insight into the conditions under which otherwise promising therapies may fail and, more importantly, when they will succeed. Cisplatin is used as a contrast to doxorubicin since both published experimental data and our simulations indicate its lesion distribution is more uniform than that of doxorubicin. Because of this some of the complexity in predicting its therapeutic efficacy is mitigated. Using this advantage, we show results suggesting that in vitro monolayer assays using this drug may more accurately predict in vivo performance than for drugs like doxorubicin. The nonlinear interaction among various determinants representing cell and lesion phenotype as well as therapeutic strategies is a unifying theme of our results. Throughout it can be appreciated that macroscopic environmental conditions, notably drug and nutrient distributions, give rise to considerable variation in lesion response, hence clinical resistance. Moreover, the synergy or antagonism of combined therapeutic strategies depends heavily upon this environment
Non-irradiation-derived reactive oxygen species (ROS) and cancer: therapeutic implications
Owing to their chemical reactivity, radicals have cytocidal properties. Destruction of cells by irradiation-induced radical formation is one of the most frequent interventions in cancer therapy. An alternative to irradiation-induced radical formation is in principle drug-induced formation of radicals, and the formation of toxic metabolites by enzyme catalysed reactions. Although these developments are currently still in their infancy, they nevertheless deserve consideration. There are now numerous examples known of conventional anti-cancer drugs that may at least in part exert cytotoxicity by induction of radical formation. Some drugs, such as arsenic trioxide and 2-methoxy-estradiol, were shown to induce programmed cell death due to radical formation. Enzyme-catalysed radical formation has the advantage that cytotoxic products are produced continuously over an extended period of time in the vicinity of tumour cells. Up to now the enzymatic formation of toxic metabolites has nearly exclusively been investigated using bovine serum amine oxidase (BSAO), and spermine as substrate. The metabolites of this reaction, hydrogen peroxide and aldehydes are cytotoxic. The combination of BSAO and spermine is not only able to prevent tumour cell growth, but prevents also tumour growth, particularly well if the enzyme has been conjugated with a biocompatible gel. Since the tumour cells release substrates of BSAO, the administration of spermine is not required. Combination with cytotoxic drugs, and elevation of temperature improves the cytocidal effect of spermine metabolites. The fact that multidrug resistant cells are more sensitive to spermine metabolites than their wild type counterparts makes this new approach especially attractive, since the development of multidrug resistance is one of the major problems of conventional cancer therapy
- …