124 research outputs found

    Near-infrared nonlinearity of a multicomponent tellurium oxide glass at 800 and 1,064 nm

    Get PDF
    We report on the nonlinear (NL) optical properties of glassy TeO2–GeO2–K2O–Bi2O3 at λ = 800 nm and λ = 1,064 nm. Using the Kerr gate technique with a laser delivering 150 fs pulses at 800 nm, we demonstrated the fast NL response of the samples. The modulus of the NL refractive index, n 2, at 800 nm was ~10−15 cm2/W. The Z-scan technique was used to determine n 2 ≈ +10−15 cm2/W, at 1,064 nm with pulses of 17 ps. The two-photon absorption coefficient, α 2, was smaller than the minimum that we can measure (<0.003 cm/GW). The figure of merit n 2/α 2 λ was calculated and indicates that this glass composition has large potential to be used for all-optical switching

    Rho GTPase activating protein 21-mediated regulation of prostate cancer associated 3 gene in prostate cancer cell

    Get PDF
    The overexpression of the prostate cancer antigen 3 (PCA3) gene is well-defined as a marker for prostate cancer (PCa) diagnosis. Although widely used in clinical research, PCA3 molecular mechanisms remain unknown. Herein we used phage display technology to identify putative molecules that bind to the promoter region of PCA3 gene and regulate its expression. The most frequent peptide PCA3p1 (80%) was similar to the Rho GTPase activating protein 21 (ARHGAP21) and its binding affinity was confirmed using Phage Bead ELISA. We showed that ARHGAP21 silencing in LNCaP prostate cancer cells decreased PCA3 and androgen receptor (AR) transcriptional levels and increased prune homolog 2 (PRUNE2) coding gene expression, indicating effective involvement of ARHGAP21 in androgen-dependent tumor pathway. Chromatin immunoprecipitation assay confirmed the interaction between PCA3 promoter region and ARHGAP21. This is the first study that described the role of ARHGAP21 in regulating the PCA3 gene under the androgenic pathway, standing out as a new mechanism of gene regulatory control during prostatic oncogenesis

    LC-MS characterization of valsartan degradation products and comparison with LC-PDA

    Get PDF
    abstract Valsartan was submitted to forced degradation under acid hydrolysis condition as prescribed by the ICH. Degraded sample aliquots were separated via HPLC using a Hypersil ODS (C18) column (250 x 4.6 mm i.d., 5 µm). Either photodiode array (PDA) detection or mass spectrometry (MS) full scan monitoring of HPLC runs were used. HPLC-PDA failed to indicate Valsartan degradation under forced acid degradation, showing an insignificant peak area variation and that Valsartan apparently remained pure. HPLC-MS using electrospray ionization (ESI) and total ionic current (TIC) monitoring did not reveal any peak variation either, but inspection of the ESI mass spectra showed the appearance of m/z 306 and m/z 352 ions for the same retention time as that of Valsartan (m/z 436). These ions were identified as being protonated molecules of two co-eluting degradation products formed by hydrolysis. These assignments were confirmed by ESI-MS/MS with direct infusion of the degraded samples. The results showed that the use of selective HPLC-MS is essential for monitoring Valsartan degradation. Efficient HPLC separation coupled to selective and structural diagnostic MS monitoring seems therefore mandatory for comprehensive drug degradation studies, particularly for new drugs and formulations, and for method development

    Differential leaf gas exchange performance of mango cultivars infected by different isolates of Ceratocystis fimbriata

    Full text link
    ABSTRACT Caused by the vascular fungus Ceratocystis fimbriata, mango wilt is considered to be one of the most serious threats in mango-producing regions worldwide. However, changes in leaf gas exchange level and the mechanisms underlying host responses to this fungal infection remain poorly described. This study aimed to evaluate potential changes in the leaf gas exchange of different mango cultivars (Ubá, Espada, Haden and Tommy Atkins) in response to two Brazilian isolates of C. fimbriata (CEBS15 and MSAK16) to non-invasively assess cultivar variability in relation to the basal level of resistance to mango wilt. Both isolates, regardless of the cultivar, caused reductions in stomatal conductance and, thus, a reduction in CO2 assimilation via diffusive limitations. Taking into account the full length of the internal lesion and the radial colonization of the stem tissues, both isolates showed equivalent aggressiveness when inoculated into the Haden and Tommy Atkins cultivars. Conversely, when compared to the CEBS15 isolate of C. fimbriata, the MSAK16 isolate was more aggressive in cv. Espada and less aggressive in cv. Ubá
    corecore