12 research outputs found

    High sensitivity organic inorganic hybrid X-ray detectors with direct transduction and broadband response

    Get PDF
    X-ray detectors are critical to healthcare diagnostics, cancer therapy and homeland security, with many potential uses limited by system cost and/or detector dimensions. Current X-ray detector sensitivities are limited by the bulk X-ray attenuation of the materials and consequently necessitate thick crystals (~1 mm-1 cm), resulting in rigid structures, high operational voltages and high cost. Here we present a disruptive, flexible, low cost, broadband, and high sensitivity direct X-ray transduction technology produced by embedding high atomic number bismuth oxide nanoparticles in an organic bulk heterojunction. These hybrid detectors demonstrate sensitivities of 1712 µC mGy-1 cm-3 for "soft" X-rays and ~30 and 58 µC mGy-1 cm-3 under 6 and 15 MV "hard" X-rays generated from a medical linear accelerator; strongly competing with the current solid state detectors, all achieved at low bias voltages (-10 V) and low power, enabling detector operation powered by coin cell batteries

    The transition zone on a heated axisymmetric body

    No full text

    Diffusion processes as possible mechanisms for Cr depletion at SCC crack tip

    No full text
    International audienceTwo mechanisms are studied to explain the asymmetrical chromium depletions observed ahead of SCC crack tips in nickel-base alloys: diffusion-induced grain boundary migration (DIGM) and plasticity-enhanced diffusion. On the one hand, DIGM is evidenced in a model Alloy 600 by focused ion beam (FIB) coupled with scanning electron microscopy (SEM) cross-section imaging and analytical transmission electron microscopy (TEM) after annealing at 500 °C under vacuum and at 340 °C after exposure to primary water. The occurrence of grain boundary migration depends on the grain boundary character and misorientation. On the other hand, the effect of plasticity on chromium diffusion in nickel single-crystals is investigated by performing diffusion tests during creep tests at 500 and 350 °C. An enhancement of Cr diffusion is observed and a linear relationship between the diffusion coefficient and strain rate is evidenced. At last, in an attempt to discriminate the two mechanisms, an analytical modeling of the Cr-depleted areas observed at propagating SCC crack tips is proposed
    corecore