80 research outputs found

    The role of inflammation in anxiety and depression in the European U-BIOPRED asthma cohorts

    Get PDF
    BACKGROUND: Growing evidence indicates high comorbid anxiety and depression in patients with asthma. However, the mechanisms underlying this comorbid condition remain unclear. The aim of this study was to investigate the role of inflammation in comorbid anxiety and depression in three asthma patient cohorts of the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) project. METHODS: U-BIOPRED was conducted by a European Union consortium of 16 academic institutions in 11 European countries. A subset dataset from subjects with valid anxiety and depression measures and a large blood biomarker dataset were analysed, including 198 non-smoking patients with severe asthma (SAn), 65 smoking patients with severe asthma (SAs), 61 non-smoking patients with mild-to-moderate asthma (MMA), and 20 healthy non-smokers (HC). The Hospital Anxiety and Depression Scale was used to measure anxiety and depression and a series of inflammatory markers were analysed by the SomaScan v3 platform (SomaLogic, Boulder, Colo). ANOVA and the Kruskal-Wallis test were used for multiple-group comparisons as appropriate. RESULTS: There were significant group effects on anxiety and depression among the four cohort groups (p < 0.05). Anxiety and depression of SAn and SAs groups were significantly higher than that of MMA and HC groups (p < 0.05. There were significant differences in serum IL6, MCP1, CCL18, CCL17, IL8, and Eotaxin among the four groups (p < 0.05). Depression was significantly associated with IL6, MCP1, CCL18 level, and CCL17; whereas anxiety was associated with CCL17 only (p < 0.05). CONCLUSIONS: The current study suggests that severe asthma patients are associated with higher levels of anxiety and depression, and inflammatory responses may underlie this comorbid condition

    IL-17-high asthma with features of a psoriasis immunophenotype

    Get PDF
    BACKGROUND: The role of IL-17 immunity is well established in patients with inflammatory diseases, such as psoriasis and inflammatory bowel disease, but not in asthmatic patients, in whom further study is required. OBJECTIVE: We sought to undertake a deep phenotyping study of asthmatic patients with upregulated IL-17 immunity. METHODS: Whole-genome transcriptomic analysis was performed by using epithelial brushings, bronchial biopsy specimens (91 asthmatic patients and 46 healthy control subjects), and whole blood samples (n = 498) from the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) cohort. Gene signatures induced in vitro by IL-17 and IL-13 in bronchial epithelial cells were used to identify patients with IL-17-high and IL-13-high asthma phenotypes. RESULTS: Twenty-two of 91 patients were identified with IL-17, and 9 patients were identified with IL-13 gene signatures. The patients with IL-17-high asthma were characterized by risk of frequent exacerbations, airway (sputum and mucosal) neutrophilia, decreased lung microbiota diversity, and urinary biomarker evidence of activation of the thromboxane B2 pathway. In pathway analysis the differentially expressed genes in patients with IL-17-high asthma were shared with those reported as altered in psoriasis lesions and included genes regulating epithelial barrier function and defense mechanisms, such as IL1B, IL6, IL8, and β-defensin. CONCLUSION: The IL-17-high asthma phenotype, characterized by bronchial epithelial dysfunction and upregulated antimicrobial and inflammatory response, resembles the immunophenotype of psoriasis, including activation of the thromboxane B2 pathway, which should be considered a biomarker for this phenotype in further studies, including clinical trials targeting IL-1

    Physicists attempt to scale the ivory towers of finance

    Full text link
    Physicists have recently begun doing research in finance, and even though this movement is less than five years old, interesting and useful contributions have already emerged. This article reviews these developments in four areas, including empirical statistical properties of prices, random-process models for price dynamics, agent-based modeling, and practical applications.Comment: 13 pages, 5 figure

    IgE Immune Complexes Stimulate an Increase in Lung Mast Cell Progenitors in a Mouse Model of Allergic Airway Inflammation

    Get PDF
    Mast cell numbers and allergen specific IgE are increased in the lungs of patients with allergic asthma and this can be reproduced in mouse models. The increased number of mast cells is likely due to recruitment of mast cell progenitors that mature in situ. We hypothesized that formation of IgE immune complexes in the lungs of sensitized mice increase the migration of mast cell progenitors to this organ. To study this, a model of allergic airway inflammation where mice were immunized with ovalbumin (OVA) in alum twice followed by three daily intranasal challenges of either OVA coupled to trinitrophenyl (TNP) alone or as immune complexes with IgE-anti-TNP, was used. Mast cell progenitors were quantified by a limiting dilution assay. IgE immune complex challenge of sensitized mice elicited three times more mast cell progenitors per lung than challenge with the same dose of antigen alone. This dose of antigen challenge alone did not increase the levels of mast cell progenitors compared to unchallenged mice. IgE immune complex challenge of sensitized mice also enhanced the frequency of mast cell progenitors per 106 mononuclear cells by 2.1-fold. The enhancement of lung mast cell progenitors by IgE immune complex challenge was lost in FcRγ deficient mice but not in CD23 deficient mice. Our data show that IgE immune complex challenge enhances the number of mast cell progenitors in the lung through activation of an Fc receptor associated with the FcRγ chain. This most likely takes place via activation of FcεRI, although activation via FcγRIV or a combination of the two receptors cannot be excluded. IgE immune complex-mediated enhancement of lung MCp numbers is a new reason to target IgE in therapies against allergic asthma

    A structured review of reasons for ecstasy use and related behaviours: pointers for future research

    Get PDF
    Abstract Background While the health risks of using ecstasy warrant intervention development, a recent meta-analysis of determinants of ecstasy use identified a number of lacunae in the literature. Specifically, no studies were included that address behaviours other than 'using ecstasy' (e.g. 'trying out ecstasy' or 'ceasing ecstasy use'). However, because meta-analyses aim to integrate study results quantitatively, the resulting rigid exclusion criteria cause many studies to be discarded on the basis of their qualitative methodology. Such qualitative studies may nonetheless provide valuable insights to guide future research. To provide an overview of these insights regarding ecstasy use, the current study summarizes and combines what is known from qualitative and exploratory quantitative literature on ecstasy use. Methods The databases PsycINFO and MedLine were searched for publications reporting reasons for ecstasy use and related behaviour, and the results were structured and discussed per behaviour and compared over behaviours. Results Two main categories of reasons were found. The first category comprised reasons to start using ecstasy, use ecstasy, use ecstasy more often, and refrain from ceasing ecstasy use. The second category comprised reasons to refrain from starting to use ecstasy, use less ecstasy, and cease using ecstasy. Reasons for related behaviours within each of these two categories appear to differ, but not as substantially as between the two categories. A large number of reasons that were not yet explored in quantitative research emerged. Conclusion The current summary and combination of exploratory studies yields useful lists of reasons for each behaviour. Before these lists can inform interventions, however, they beg quantitative verification. Also, similarity of determinant configurations of different behaviours can be assessed by addressing determinants of several behaviours in one study. Another important finding is that meta-analytical integration of the literature may overlook important findings and implications. Thus, qualitative reviews remain useful instruments in setting the research agenda.</p

    The Tetraspanins CD9 and CD81 Regulate CD9P1-Induced Effects on Cell Migration

    Get PDF
    CD9P-1 is a cell surface protein with immunoglobulin domains and an unknown function that specifically associates with tetraspanins CD9 and CD81. Overexpression of CD9P-1 in HEK-293 cells induces dramatic changes in cell spreading and migration on various matrices. Experiments using time-lapse videomicroscopy revealed that CD9P-1 expression has led to higher cell motility on collagen I but lower motility on fibronectin through a β1-integrins dependent mechanism. On collagen I, the increase in cell motility induced by CD9P-1 expression was found to involve integrin α2β1 and CD9P-1 was observed to associate with this collagen receptor. The generation of CD9P-1 mutants demonstrated that the transmembrane and the cytoplasmic domains are necessary for inducing effects on cell motility. On the other hand, expression of tetraspanins CD9 or CD81 was shown to reverse the effects of CD9P-1 on cell motility on collagen I or fibronectin with a concomitant association with CD9P-1. Thus, the ratio of expression levels between CD9P-1 and its tetraspanin partners can regulate cell motility

    Profiling of the Tetraspanin CD151 Web and Conspiracy of CD151/Integrin β1 Complex in the Progression of Hepatocellular Carcinoma

    Get PDF
    Tetraspanin CD151 has been implicated in metastasis through forming complexes with different molecular partners. In this study, we mapped tetraspanin web proteins centered on CD151, in order to explore the role of CD151 complexes in the progression of hepatocellular carcinoma (HCC). Immunoprecipitation was used to isolate tetraspanin complexes from HCCLM3 cells using a CD151 antibody, and associated proteins were identified by mass spectrometry. The interaction of CD151 and its molecular partners, and their roles in invasiveness and metastasis of HCC cells were assayed through disruption of the CD151 network. Finally, the clinical implication of CD151 complexes in HCC patients was also examined. In this study, we identified 58 proteins, characterized the tetraspanin CD151 web, and chose integrin β1 as a main partner to further investigate. When the CD151/integrin β1 complex in HCC cells was disrupted, migration, invasiveness, secretion of matrix metalloproteinase 9, and metastasis were markedly influenced. However, both CD151 and integrin β1 expression were untouched. HCC patients with high expression of CD151/integrin β1 complex had the poorest prognosis of the whole cohort of patients. Together, our data show that CD151 acts as an important player in the progression of HCC in an integrin β1-dependent manner

    Epithelial dysregulation in obese severe asthmatics with gastro-oesophageal reflux

    Get PDF

    Urinary metabotype of severe asthma evidences decreased carnitine metabolism independent of oral corticosteroid treatment in the U-BIOPRED study

    Get PDF
    Introduction Asthma is a heterogeneous disease with poorly defined phenotypes. Patients with severe asthma often receive multiple treatments including oral corticosteroids (OCS). Treatment may modify the observed metabotype, rendering it challenging to investigate underlying disease mechanisms. Here, we aimed to identify dysregulated metabolic processes in relation to asthma severity and medication. Methods Baseline urine was collected prospectively from healthy participants (n=100), patients with mild-to-moderate asthma (n=87) and patients with severe asthma (n=418) in the cross-sectional U-BIOPRED cohort; 12–18-month longitudinal samples were collected from patients with severe asthma (n=305). Metabolomics data were acquired using high-resolution mass spectrometry and analysed using univariate and multivariate methods. Results A total of 90 metabolites were identified, with 40 significantly altered (p<0.05, false discovery rate <0.05) in severe asthma and 23 by OCS use. Multivariate modelling showed that observed metabotypes in healthy participants and patients with mild-to-moderate asthma differed significantly from those in patients with severe asthma (p=2.6×10−20), OCS-treated asthmatic patients differed significantly from non-treated patients (p=9.5×10−4), and longitudinal metabotypes demonstrated temporal stability. Carnitine levels evidenced the strongest OCS-independent decrease in severe asthma. Reduced carnitine levels were associated with mitochondrial dysfunction via decreases in pathway enrichment scores of fatty acid metabolism and reduced expression of the carnitine transporter SLC22A5 in sputum and bronchial brushings. Conclusions This is the first large-scale study to delineate disease- and OCS-associated metabolic differences in asthma. The widespread associations with different therapies upon the observed metabotypes demonstrate the need to evaluate potential modulating effects on a treatment- and metabolite-specific basis. Altered carnitine metabolism is a potentially actionable therapeutic target that is independent of OCS treatment, highlighting the role of mitochondrial dysfunction in severe asthma

    Molecular architecture and function of the hemidesmosome

    Get PDF
    • …
    corecore