3,226 research outputs found

    Prevalence of Hypertension and Association of Obesity with Hypertension in School Ggoing Children of Surat City, Western India.

    Get PDF
    Purpose: The association of obesity with hypertension has been recognized for the decades which are the important risk factors for the cardiovascular disease. So the purpose of the present study was to determine association of obesity with hypertension in school going children of Surat. Methodology: School going children aged between 12-18 years, of five schools in Surat were selected for the study. Height and weight were measured and BMI was calculated. Blood pressure measurements were taken as per recommendation of American heart society and family history of hypertension has also been assessed. Hypertension was considered if blood pressure is more than 95th percentile according to the update of task force report and Obesity was diagnosed by BMI for age. Results: Of 682 children, 8.94% were obese and 20.09% were hypertensive. Conclusion: Obesity is strongly associated with hypertension in children and both together may risk factors for later coronary disease

    ARPES in the normal state of the cuprates: comparing the marginal Fermi liquid and spin fluctuation scenarios

    Full text link
    We address the issue whether ARPES measurements of the spectral function Ak(ω)A_k (\omega) near the Fermi surface in the normal state of near optimally doped cuprates can distinguish between the marginal Fermi liquid scenario and the spin-fluctuation scenario. We argue that the data for momenta near the Fermi surface are equally well described by both theories, but this agreement is nearly meaningless as in both cases one has to add to Σ(ω)\Sigma^{\prime \prime} (\omega) a large constant of yet unknown origin. We show that the data can be well fitted by keeping only this constant term in the self-energy. To distinguish between the two scenarios, one has to analyze the data away from the Fermi surface, when the intrinsic piece in Σ(ω)\Sigma (\omega) becomes dominant.Comment: Accepted for publication in Europhysics Letters, Incorrect interpretation of reference 10 correcte

    Optimizing Random Forest Algorithm to Classify Player's Memorisation via In-game Data

    Get PDF
    Assessment of a player's knowledge in game education has been around for some time. Traditional evaluation in and around a gaming session may disrupt the players' immersion. This research uses an optimized Random Forest to construct a non-invasive prediction of a game education player's Memorization via in-game data. Firstly, we obtained the dataset from a 3-month survey to record in-game data of 50 players who play 4-15 game stages of the Chem Fight (a test case game). Next, we generated three variants of datasets via the preprocessing stages: resampling method (SMOTE), normalization (min-max), and a combination of resampling and normalization. Then, we trained and optimized three Random Forest (RF) classifiers to predict the player's Memorization. We chose RF because it can generalize well given the high-dimensional dataset. We used RF as the classifier, subject to optimization using its hyperparameter: n_estimators. We implemented a Grid Search Cross Validation (GSCV) method to identify the best value of  n_estimators. We utilized the statistics of GSCV results to reduce the weight of  n_estimators by observing the region of interest shown by the graphs of performances of the classifiers. Overall, the classifiers fitted using the BEST n_estimators (i.e., 89, 31, 89, and 196 trees) from GSCV performed well with around 80% accuracy. Moreover, we successfully identified the smaller number of n_estimators (OPTIMAL), at least halved the BEST  n_estimators. All classifiers were retrained using the OPTIMAL  n_estimators (37, 12, 37, and 41 trees). We found out that the performances of the classifiers were relatively steady at ~80%. This means that we successfully optimized the Random Forest in predicting a player's Memorization when playing the Chem Fight game. An automated technique presented in this paper can monitor student interactions and evaluate their abilities based on in-game data. As such, it can offer objective data about the skills used

    Oral Mucosa Tissue Equivalents for the Treatment of Limbal Stem Cell Deficiency

    Get PDF
    Cultured limbal and oral epithelial cells have been successfully used to treat patients with limbal stem cell deficiency (LSCD). The most common culture method for these cell therapies utilizes amniotic membrane as a cell support and/or murine 3T3s as feeder fibroblasts. The aim of this study is to refine the production of autologous oral mucosal cell therapy for the treatment of LSCD. Real architecture for 3D tissue (RAFT) is used as an alternative cell culture support. In addition, oral mucosal cells (epithelial and fibroblast) are used as autologous alternatives to donor human limbal epithelial cells (HLE) and murine 3T3s. The following tissue equivalents are produced and characterized: first, for patients with bilateral LSCD, an oral mucosa tissue equivalent consisting of human oral mucosal epithelial cells on RAFT supported by human oral mucosal fibroblasts (HOMF). Second, for patients with unilateral LSCD, HLE on RAFT supported by HOMF. For both tissue equivalent types, features of the cornea are observed including a multi-layered epithelium with small cells with a stem cell like phenotype in the basal layer and squamous cells in the top layers, and p63α and PAX6 expression. These tissue equivalents may therefore be useful in the treatment of LSCD

    Flecainide reduces Ca2+ spark and wave frequency via inhibition of the sarcolemmal sodium current

    Get PDF
    AIMS: Ca(2+) waves are thought to be important in the aetiology of ventricular tachyarrhythmias. There have been conflicting results regarding whether flecainide reduces Ca(2+) waves in isolated cardiomyocytes. We sought to confirm whether flecainide inhibits waves in the intact cardiomyocyte and to elucidate the mechanism. METHODS AND RESULTS: We imaged spontaneous sarcoplasmic reticulum (SR) Ca(2+) release events in healthy adult rat cardiomyocytes. Variation in stimulation frequency was used to produce Ca(2+) sparks or waves. Spark frequency, wave frequency, and wave velocity were reduced by flecainide in the absence of a reduction of SR Ca(2+) content. Inhibition of I(Na) via alternative pharmacological agents (tetrodotoxin, propafenone, or lidocaine) produced similar changes. To assess the contribution of I(Na) to spark and wave production, voltage clamping was used to activate contraction from holding potentials of −80 or −40 mV. This confirmed that reducing Na(+) influx during myocyte stimulation is sufficient to reduce waves and that flecainide only causes Ca(2+) wave reduction when I(Na) is active. It was found that Na(+)/Ca(2+)-exchanger (NCX)-mediated Ca(2+) efflux was significantly enhanced by flecainide and that the effects of flecainide on wave frequency could be reversed by reducing [Na(+)](o), suggesting an important downstream role for NCX function. CONCLUSION: Flecainide reduces spark and wave frequency in the intact rat cardiomyocyte at therapeutically relevant concentrations but the mechanism involves I(Na) reduction rather than direct ryanodine receptor (RyR2) inhibition. Reduced I(Na) results in increased Ca(2+) efflux via NCX across the sarcolemma, reducing Ca(2+) concentration in the vicinity of the RyR2

    A new high: Cannabis as a budding source of carbon-based materials for electrochemical power sources

    Get PDF
    Cannabis sativa L., a low-cost, fast-growing herbaceous plant, is seeing a resurgence in widespread cultivation as a result of new policies and product drive. Its biodegradable and environmentally benign nature coupled with its high specific surface area and three-dimensional hierarchal structure makes it an excellent candidate for use as a biomass-derived carbon material for electrochemical power sources. It is proposed that this ‘wonder crop’ could have an important role in the energy transition by providing high-functioning carbon-based materials for electrochemistry. In this article, all instances of C. sativa usage in batteries, fuel cells and supercapacitors are discussed with a focus on highlighting the high capacity, rate capability, capacitance, current density and half-wave potential that can be achieved with its utilisation in the field

    MRI in multiple myeloma : a pictorial review of diagnostic and post-treatment findings

    Get PDF
    Magnetic resonance imaging (MRI) is increasingly being used in the diagnostic work-up of patients with multiple myeloma. Since 2014, MRI findings are included in the new diagnostic criteria proposed by the International Myeloma Working Group. Patients with smouldering myeloma presenting with more than one unequivocal focal lesion in the bone marrow on MRI are considered having symptomatic myeloma requiring treatment, regardless of the presence of lytic bone lesions. However, bone marrow evaluation with MRI offers more than only morphological information regarding the detection of focal lesions in patients with MM. The overall performance of MRI is enhanced by applying dynamic contrast-enhanced MRI and diffusion weighted imaging sequences, providing additional functional information on bone marrow vascularization and cellularity. This pictorial review provides an overview of the most important imaging findings in patients with monoclonal gammopathy of undetermined significance, smouldering myeloma and multiple myeloma, by performing a 'total' MRI investigation with implications for the diagnosis, staging and response assessment. Main message aEuro cent Conventional MRI diagnoses multiple myeloma by assessing the infiltration pattern. aEuro cent Dynamic contrast-enhanced MRI diagnoses multiple myeloma by assessing vascularization and perfusion. aEuro cent Diffusion weighted imaging evaluates bone marrow composition and cellularity in multiple myeloma. aEuro cent Combined morphological and functional MRI provides optimal bone marrow assessment for staging. aEuro cent Combined morphological and functional MRI is of considerable value in treatment follow-up

    Neutron studies of Na-ion battery materials

    Get PDF
    The relative vast abundance and more equitable global distribution of terrestrial sodium makes sodium-ion batteries (NIBs) potentially cheaper and more sustainable alternatives to commercial lithium-ion batteries (LIBs). However, the practical capacities and cycle lives of NIBs at present do not match those of LIBs and have therefore hindered their progress to commercialisation. The present drawback of NIB technology stems largely from the electrode materials and their associated Na+ion storage mechanisms. Increased understanding of the electrochemical storage mechanisms and kinetics is therefore vital for the development of current and novel materials to realise the commercial NIB. In contrast to x-ray techniques, the non-dependency of neutron scattering on the atomic number of elements (Z) can substantially increase the scattering contrast of small elements such as sodium and carbon, making neutron techniques powerful for the investigation of NIB electrode materials. Moreover, neutrons are far more penetrating which enables more complex sample environments including in situ and operando studies. Here, we introduce the theory of, and review the use of, neutron diffraction and quasi-elastic neutron scattering, to investigate the structural and dynamic properties of electrode and electrolyte materials for NIBs. To improve our understanding of the actual sodium storage mechanisms and identify intermediate stages during charge/discharge, ex situ, in situ, and operando neutron experiments are required. However, to date there are few studies where operando experiments are conducted during electrochemical cycling. This highlights an opportunity for research to elucidate the operating mechanisms within NIB materials that are under much debate at present

    Neutron studies of Na-ion battery materials

    Get PDF
    The relative vast abundance and more equitable global distribution of terrestrial sodium makes sodium-ion batteries (NIBs) potentially cheaper and more sustainable alternatives to commercial lithium-ion batteries (LIBs). However, the practical capacities and cycle lives of NIBs at present do not match those of LIBs and have therefore hindered their progress to commercialisation. The present drawback of NIB technology stems largely from the electrode materials and their associated Na+ion storage mechanisms. Increased understanding of the electrochemical storage mechanisms and kinetics is therefore vital for the development of current and novel materials to realise the commercial NIB. In contrast to x-ray techniques, the non-dependency of neutron scattering on the atomic number of elements (Z) can substantially increase the scattering contrast of small elements such as sodium and carbon, making neutron techniques powerful for the investigation of NIB electrode materials. Moreover, neutrons are far more penetrating which enables more complex sample environments including in situ and operando studies. Here, we introduce the theory of, and review the use of, neutron diffraction and quasi-elastic neutron scattering, to investigate the structural and dynamic properties of electrode and electrolyte materials for NIBs. To improve our understanding of the actual sodium storage mechanisms and identify intermediate stages during charge/discharge, ex situ, in situ, and operando neutron experiments are required. However, to date there are few studies where operando experiments are conducted during electrochemical cycling. This highlights an opportunity for research to elucidate the operating mechanisms within NIB materials that are under much debate at present

    Empathy and inclusivity to people from different cultures

    Get PDF
    The day men came to exist on this planet they became conscious of their differences when compared to others. Things like colour, language, dialect, ethnicity, tribe, religion, religious denomination, country of origin, culture, tradition, etc. can be factors that divide humanity. At times, such division can cause hatred, discrimination, racism and perhaps cause nations to go into war against one another. On the contrary, qualities like feeling empathy and inclusivity can make an individual to be thoughtful and sensitive towards one another. Through this webinar session with the students of COMM 3090 IIUM, we were able to communicate some Islamic ideas to the students and general audience. Ideas from the team were communicated via the Cyberworld. The findings indicated that schools, students, learning institutions, governments, nations around the globe, plus the United Nations should campaign against racism, marginalization of minorities, sectarian violence, foreign occupation, war, etc. in order to create a better world where peace and harmony prevail and people can live in acceptance of one another
    corecore