91 research outputs found

    Adjuvant chemotherapy for stage I non-seminomatous testicular cancer

    Get PDF
    The International Society for Burns Injuries (ISBI) has published guidelines for the management of multiple or mass burns casualties, and recommends that 'each country has or should have a disaster planning system that addresses its own particular needs.' The need for a national burns disaster plan integrated with national and provincial disaster planning was discussed at the South African Burns Society Congress in 2009, but there was no real involvement in the disaster planning prior to the 2010 World Cup; the country would have been poorly prepared had there been a burns disaster during the event. This article identifies some of the lessons learnt and strategies derived from major burns disasters and burns disaster planning from other regions. Members of the South African Burns Society are undertaking an audit of burns care in South Africa to investigate the feasibility of a national burns disaster plan. This audit (which is still under way) also aims to identify weaknesses of burns care in South Africa and implement improvements where necessary

    Under pressure: Response urgency modulates striatal and insula activity during decision-making under risk

    Get PDF
    When deciding whether to bet in situations that involve potential monetary loss or gain (mixed gambles), a subjective sense of pressure can influence the evaluation of the expected utility associated with each choice option. Here, we explored how gambling decisions, their psychophysiological and neural counterparts are modulated by an induced sense of urgency to respond. Urgency influenced decision times and evoked heart rate responses, interacting with the expected value of each gamble. Using functional MRI, we observed that this interaction was associated with changes in the activity of the striatum, a critical region for both reward and choice selection, and within the insula, a region implicated as the substrate of affective feelings arising from interoceptive signals which influence motivational behavior. Our findings bridge current psychophysiological and neurobiological models of value representation and action-programming, identifying the striatum and insular cortex as the key substrates of decision-making under risk and urgency

    The yeast P5 type ATPase, Spf1, regulates manganese transport into the endoplasmic reticulum

    Get PDF
    The endoplasmic reticulum (ER) is a large, multifunctional and essential organelle. Despite intense research, the function of more than a third of ER proteins remains unknown even in the well-studied model organism Saccharomyces cerevisiae. One such protein is Spf1, which is a highly conserved, ER localized, putative P-type ATPase. Deletion of SPF1 causes a wide variety of phenotypes including severe ER stress suggesting that this protein is essential for the normal function of the ER. The closest homologue of Spf1 is the vacuolar P-type ATPase Ypk9 that influences Mn2+ homeostasis. However in vitro reconstitution assays with Spf1 have not yielded insight into its transport specificity. Here we took an in vivo approach to detect the direct and indirect effects of deleting SPF1. We found a specific reduction in the luminal concentration of Mn2+ in ∆spf1 cells and an increase following it’s overexpression. In agreement with the observed loss of luminal Mn2+ we could observe concurrent reduction in many Mn2+-related process in the ER lumen. Conversely, cytosolic Mn2+-dependent processes were increased. Together, these data support a role for Spf1p in Mn2+ transport in the cell. We also demonstrate that the human sequence homologue, ATP13A1, is a functionally conserved orthologue. Since ATP13A1 is highly expressed in developing neuronal tissues and in the brain, this should help in the study of Mn2+-dependent neurological disorders

    The Role of the Parkinson's Disease Gene PARK9 in Essential Cellular Pathways and the Manganese Homeostasis Network in Yeast

    Get PDF
    YPK9 (Yeast PARK9; also known as YOR291W) is a non-essential yeast gene predicted by sequence to encode a transmembrane P-type transport ATPase. However, its substrate specificity is unknown. Mutations in the human homolog of YPK9, ATP13A2/PARK9, have been linked to genetic forms of early onset parkinsonism. We previously described a strong genetic interaction between Ypk9 and another Parkinson's disease (PD) protein α-synuclein in multiple model systems, and a role for Ypk9 in manganese detoxification in yeast. In humans, environmental exposure to toxic levels of manganese causes a syndrome similar to PD and is thus an environmental risk factor for the disease. How manganese contributes to neurodegeneration is poorly understood. Here we describe multiple genome-wide screens in yeast aimed at defining the cellular function of Ypk9 and the mechanisms by which it protects cells from manganese toxicity. In physiological conditions, we found that Ypk9 genetically interacts with essential genes involved in cellular trafficking and the cell cycle. Deletion of Ypk9 sensitizes yeast cells to exposure to excess manganese. Using a library of non-essential gene deletions, we screened for additional genes involved in tolerance to excess manganese exposure, discovering several novel pathways involved in manganese homeostasis. We defined the dependence of the deletion strain phenotypes in the presence of manganese on Ypk9, and found that Ypk9 deletion modifies the manganese tolerance of only a subset of strains. These results confirm a role for Ypk9 in manganese homeostasis and illuminates cellular pathways and biological processes in which Ypk9 likely functions

    Combining proteomics and lipid analysis to unravel Confidor stress response in Saccharomyces cerevisiae

    No full text
    The yeast Saccharomyces cerevisiae is a useful model for studying the influence of different stress factors on eukaryotic cells. In this work we used the pesticide imidacloprid, in the Confidor® formulation, as the stress factor and analyzed its influence on the metabolic activity, proteome and lipid content and composition of Saccharomyces cerevisiae yeast. During the cultivation of yeast, the lowest recommended application dose of Confidor® (0.025 %, v/v) was added to the growth media and its influence on the mitochondria, cytosol with microsomes and the whole yeast cells was monitored. The results show that under the stress provoked by the toxic effects of Confidor®, yeast cells density significantly decreased and the percentage of metabolically disturbed cells significantly increased comparing with untreated control. Also, there was a downregulation of majority of glycolytic, gluconeogenesis and TCA cycle enzymes (Fba1, Adh1, Hxk2, Tal1, Tdh1, Tdh3, Eno1) thus providing enough acetyl-CoA for the lipid restructuring and accumulation mechanism since we have found the changes in the cell and mitochondrial lipid content and FA composition. This data suggest that lipids could be the molecules that orchestrate the answer of the cells in the stress response to the Confidor® treatment
    corecore