9 research outputs found

    Massive Metastable Charged (S)Particles at the LHC

    Get PDF
    This brief review deals with recent interest in the prospects of observing a Massive Metastable Charged Particle (MMCP) at the Large Hadron Collider (LHC), and measuring its properties there. We discuss the motivation for scenarios with MMCPs in a phenomenological context, focusing on supersymmetric models that allow us to explore the expected experimental signatures of MMCPs at the LHC. We review current bounds and give estimates of the LHC reach in terms of MMCP masses

    Constraining the MSSM with Dark Matter indirect detection data

    Get PDF
    Recently, a claim of possible evidence for Dark Matter in data from the Fermi LAT experiment was made by Goodenough and Hooper [8]. We test the Dark Matter properties consistent with their claim in terms of the MSSM by a 24-dimensional parameter scan using nested sampling, excluding all but a very small region of the MSSM. Although this claim is very preliminary, and not made by the Fermi LAT experiment, our scan shows a possible approach for the analysis of future firm evidence from an indirect detection experiment, and its potential for heavily constraining models

    Gravitino Dark Matter and the Flavour Structure of R-violating Operators

    Get PDF
    We study gravitino dark matter and slow gravitino decays within the framework of R-violating supersymmetry, with particular emphasis on the flavour dependence of the branching ratios and the allowed R-violating couplings. The dominant decay modes and final state products turn out to be very sensitive to the R-violating hierarchies. Mixing effects can be crucial in correctly deriving the relative magnitude of the various contributions, particularly for heavy flavours with phase space suppression. The study of the strength of different decay rates for the gravitino is also correlated to collider signatures expected from decays of the Next-to-Lightest Supersymmetric Particle (NLSP) and to single superparticle production

    Neutralino reconstruction at the LHC from decay-frame kinematics

    Get PDF
    Decay-frame Kinematics (DK) has previously been introduced as a technique to reconstruct neutralino masses from their three-body decays to leptons. This work is an extension to the case of two-body decays through on-shell sleptons, with Monte Carlo simulation of LHC collisions demonstrating reconstruction of neutralino masses for the SPS1a benchmark point

    LHC Searches for Non-Chiral Weakly Charged Multiplets

    Get PDF
    Because the TeV-scale to be probed at the Large Hadron Collider should shed light on the naturalness, hierarchy, and dark matter problems, most searches to date have focused on new physics signatures motivated by possible solutions to these puzzles. In this paper, we consider some candidates for new states that although not well-motivated from this standpoint are obvious possibilities that current search strategies would miss. In particular we consider vector representations of fermions in multiplets of SU(2)LSU(2)_L with a lightest neutral state. Standard search strategies would fail to find such particles because of the expected small one-loop-level splitting between charged and neutral states.Comment: 16 pages, 9 figure

    Direct stau production at hadron colliders in cosmologically motivated scenarios

    Full text link
    We calculate dominant cross section contributions for stau pair production at hadron colliders within the MSSM, taking into account left-right mixing of the stau eigenstates. We find that b-quark annihilation and gluon fusion can enhance the cross sections by more than one order of magnitude with respect to the Drell-Yan predictions. These additional production channels are not yet included in the common Monte Carlo analysis programs and have been neglected in experimental analyses so far. For long-lived staus, we investigate differential distributions and prospects for their stopping in the collider detectors. New possible strategies are outlined to determine the mass and width of the heavy CP-even Higgs boson H0. Scans of the relevant regions in the CMSSM are performed and predictions are given for the current experiments at the LHC and the Tevatron. The obtained insights allow us to propose collider tests of cosmologically motivated scenarios with long-lived staus that have an exceptionally small thermal relic abundance.Comment: 49 pages, 13 figures; v2: references added, typos corrected, text streamlined, results unchange

    NMSSM in disguise: discovering singlino dark matter with soft leptons at the LHC

    Get PDF
    We suggest an NMSSM scenario, motivated by dark matter constraints, that may disguise itself as a much simpler mSUGRA scenario at the LHC. We show how its non-minimal nature can be revealed, and the bino--singlino mass difference measured, by looking for soft leptons

    Boosted objects: A Probe of beyond the Standard Model physics

    Get PDF
    We present the report of the hadronic working group of the BOOST2010 workshop held at the University of Oxford in June 2010. The first part contains a review of the potential of hadronic decays of highly boosted particles as an aid for discovery at the LHC and a discussion of the status of tools developed to meet the challenge of reconstructing and isolating these topologies. In the second part, we present new results comparing the performance of jet grooming techniques and top tagging algorithms on a common set of benchmark channels. We also study the sensitivity of jet substructure observables to the uncertainties in Monte Carlo predictions.Comment: Report of the hadronic working group of the BOOST2010 workshop, University of Oxford, 22-25 June, 2010. Editors: M. Karagoz, G. Salam, M. Spannowsky and M. Vos. v2 published in EPJ C. 19 pages, double column, uses EPJ C style for late
    corecore