54 research outputs found

    The vaginal microflora in relation to gingivitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gingivitis has been linked to adverse pregnancy outcome (APO). Bacterial vaginosis (BV) has been associated with APO. We assessed if bacterial counts in BV is associated with gingivitis suggesting a systemic infectious susceptibilty.</p> <p>Methods</p> <p>Vaginal samples were collected from 180 women (mean age 29.4 years, SD ± 6.8, range: 18 to 46), and at least six months after delivery, and assessed by semi-quantitative DNA-DNA checkerboard hybridization assay (74 bacterial species). BV was defined by Gram stain (Nugent criteria). Gingivitis was defined as bleeding on probing at ≥ 20% of tooth sites.</p> <p>Results</p> <p>A Nugent score of 0–3 (normal vaginal microflora) was found in 83 women (46.1%), and a score of > 7 (BV) in 49 women (27.2%). Gingivitis was diagnosed in 114 women (63.3%). Women with a diagnosis of BV were more likely to have gingivitis (p = 0.01). Independent of gingival conditions, vaginal bacterial counts were higher (p < 0.001) for 38/74 species in BV+ in comparison to BV- women. Counts of four lactobacilli species were higher in BV- women (p < 0.001). Independent of BV diagnosis, women with gingivitis had higher counts of <it>Prevotella bivia </it>(p < 0.001), and <it>Prevotella disiens </it>(p < 0.001). <it>P. bivia, P. disiens, M. curtisii </it>and <it>M. mulieris </it>(all at the p < 0.01 level) were found at higher levels in the BV+/G+ group than in the BV+/G- group. The sum of bacterial load (74 species) was higher in the BV+/G+ group than in the BV+/G- group (p < 0.05). The highest odds ratio for the presence of bacteria in vaginal samples (> 1.0 × 10<sup>4 </sup>cells) and a diagnosis of gingivitis was 3.9 for <it>P. bivia </it>(95% CI 1.5–5.7, p < 0.001) and 3.6 for <it>P. disiens </it>(95%CI: 1.8–7.5, p < 0.001), and a diagnosis of BV for <it>P. bivia </it>(odds ratio: 5.3, 95%CI: 2.6 to 10.4, p < 0.001) and <it>P. disiens </it>(odds ratio: 4.4, 95% CI: 2.2 to 8.8, p < 0.001).</p> <p>Conclusion</p> <p>Higher vaginal bacterial counts can be found in women with BV and gingivitis in comparison to women with BV but not gingivitis. <it>P. bivia </it>and <it>P. disiens </it>may be of specific significance in a relationship between vaginal and gingival infections.</p

    Buccal alterations in diabetes mellitus

    Get PDF
    Long standing hyperglycaemia besides damaging the kidneys, eyes, nerves, blood vessels, heart, can also impair the function of the salivary glands leading to a reduction in the salivary flow. When salivary flow decreases, as a consequence of an acute hyperglycaemia, many buccal or oral alterations can occur such as: a) increased concentration of mucin and glucose; b) impaired production and/or action of many antimicrobial factors; c) absence of a metalloprotein called gustin, that contains zinc and is responsible for the constant maturation of taste papillae; d) bad taste; e) oral candidiasis f) increased cells exfoliation after contact, because of poor lubrication; g) increased proliferation of pathogenic microorganisms; h) coated tongue; i) halitosis; and many others may occur as a consequence of chronic hyperglycaemia: a) tongue alterations, generally a burning mouth; b) periodontal disease; c) white spots due to demineralization in the teeth; d) caries; e) delayed healing of wounds; f) greater tendency to infections; g) lichen planus; h) mucosa ulcerations. Buccal alterations found in diabetic patients, although not specific of this disease, have its incidence and progression increased when an inadequate glycaemic control is present

    Biological foundation for periodontitis as a potential risk factor for atherosclerosis

    Full text link
    Links between periodontal diseases and systemic diseases have been well documented by epidemiological studies. Recently, research has shifted to elucidating the biologic mechanism for a causal relationship. One focus of interest is atherosclerosis, the underlying event of cardiovascular diseases due to its serious health impact. However, it is still not clear whether periodontopathic pathogens are truly etiologic agents or ubiquitous bystanders. This article reviews the current understanding about the molecular biological interactions between periodontal disease and atherosclerosis and the biological plausibility of periodontitis as a potential risk factor for cardiovascular disease. Materials and methods:  The current literature regarding periodontal diseases and atherosclerosis and coronary vascular disease was searched using the Medline and PubMed databases. Results:  In vitro experiments and animal models are appropriate tools to investigate the biological interactions between periodontal disease and atherosclerosis at the cell molecular level. The concepts linking both pathologies refer to inflammatory response, immune responses, and hemostasis. In particular, Porphyromonas gingivalis appears to have unique, versatile pathogenic properties. Whether or not these findings from isolated cells or animal models are applicable in humans with genetic and environmental variations is yet to be determined. Likewise, the benefit from periodontal therapy on the development of atherosclerosis is unclear. Approaches targeting inflammatory and immune responses of periodontitis and atherosclerosis simultaneously are very intriguing. Conclusion:  An emerging concept suggests that a pathogenic burden from different sources might overcome an individual threshold culminating in clinical sequela. P. gingivalis contributes directly and indirectly to atherosclerosis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66109/1/j.1600-0765.2004.00771.x.pd

    HF-EPR, Raman, UV/VIS Light Spectroscopic, and DFT Studies of the Ribonucleotide Reductase R2 Tyrosyl Radical from Epstein-Barr Virus

    Get PDF
    Epstein-Barr virus (EBV) belongs to the gamma subfamily of herpes viruses, among the most common pathogenic viruses in humans worldwide. The viral ribonucleotide reductase small subunit (RNR R2) is involved in the biosynthesis of nucleotides, the DNA precursors necessary for viral replication, and is an important drug target for EBV. RNR R2 generates a stable tyrosyl radical required for enzymatic turnover. Here, the electronic and magnetic properties of the tyrosyl radical in EBV R2 have been determined by X-band and high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy recorded at cryogenic temperatures. The radical exhibits an unusually low g1-tensor component at 2.0080, indicative of a positive charge in the vicinity of the radical. Consistent with these EPR results a relatively high C-O stretching frequency associated with the phenoxyl radical (at 1508 cm−1) is observed with resonance Raman spectroscopy. In contrast to mouse R2, EBV R2 does not show a deuterium shift in the resonance Raman spectra. Thus, the presence of a water molecule as a hydrogen bond donor moiety could not be identified unequivocally. Theoretical simulations showed that a water molecule placed at a distance of 2.6 Å from the tyrosyl-oxygen does not result in a detectable deuterium shift in the calculated Raman spectra. UV/VIS light spectroscopic studies with metal chelators and tyrosyl radical scavengers are consistent with a more accessible dimetal binding/radical site and a lower affinity for Fe2+ in EBV R2 than in Escherichia coli R2. Comparison with previous studies of RNR R2s from mouse, bacteria, and herpes viruses, demonstrates that finely tuned electronic properties of the radical exist within the same RNR R2 Ia class

    Spectroscopic Studies of the Iron and Manganese Reconstituted Tyrosyl Radical in Bacillus Cereus Ribonucleotide Reductase R2 Protein

    Get PDF
    Ribonucleotide reductase (RNR) catalyzes the rate limiting step in DNA synthesis where ribonucleotides are reduced to the corresponding deoxyribonucleotides. Class Ib RNRs consist of two homodimeric subunits: R1E, which houses the active site; and R2F, which contains a metallo cofactor and a tyrosyl radical that initiates the ribonucleotide reduction reaction. We studied the R2F subunit of B. cereus reconstituted with iron or alternatively with manganese ions, then subsequently reacted with molecular oxygen to generate two tyrosyl-radicals. The two similar X-band EPR spectra did not change significantly over 4 to 50 K. From the 285 GHz EPR spectrum of the iron form, a g1-value of 2.0090 for the tyrosyl radical was extracted. This g1-value is similar to that observed in class Ia E. coli R2 and class Ib R2Fs with iron-oxygen cluster, suggesting the absence of hydrogen bond to the phenoxyl group. This was confirmed by resonance Raman spectroscopy, where the stretching vibration associated to the radical (C-O, ν7a = 1500 cm−1) was found to be insensitive to deuterium-oxide exchange. Additionally, the 18O-sensitive Fe-O-Fe symmetric stretching (483 cm−1) of the metallo-cofactor was also insensitive to deuterium-oxide exchange indicating no hydrogen bonding to the di-iron-oxygen cluster, and thus, different from mouse R2 with a hydrogen bonded cluster. The HF-EPR spectrum of the manganese reconstituted RNR R2F gave a g1-value of ∼2.0094. The tyrosyl radical microwave power saturation behavior of the iron-oxygen cluster form was as observed in class Ia R2, with diamagnetic di-ferric cluster ground state, while the properties of the manganese reconstituted form indicated a magnetic ground state of the manganese-cluster. The recent activity measurements (Crona et al., (2011) J Biol Chem 286: 33053–33060) indicates that both the manganese and iron reconstituted RNR R2F could be functional. The manganese form might be very important, as it has 8 times higher activity

    Host response mechanisms in periodontal diseases

    Full text link
    corecore