42 research outputs found
Epstein-Barr virus-encoded microRNA BART1 induces tumour metastasis by regulating PTEN-dependent pathways in nasopharyngeal carcinoma.
Epstein-Barr virus (EBV), aetiologically linked to nasopharyngeal carcinoma (NPC), is the first human virus found to encode many miRNAs. However, how these viral miRNAs precisely regulate the tumour metastasis in NPC remains obscure. Here we report that EBV-miR-BART1 is highly expressed in NPC and closely associated with pathological and advanced clinical stages of NPC. Alteration of EBV-miR-BART1 expression results in an increase in migration and invasion of NPC cells in vitro and causes tumour metastasis in vivo. Mechanistically, EBV-miR-BART1 directly targets the cellular tumour suppressor PTEN. Reduction of PTEN dosage by EBV-miR-BART1 activates PTEN-dependent pathways including PI3K-Akt, FAK-p130(Cas) and Shc-MAPK/ERK1/2 signalling, drives EMT, and consequently increases migration, invasion and metastasis of NPC cells. Reconstitution of PTEN rescues all phenotypes generated by EBV-miR-BART1, highlighting the role of PTEN in EBV-miR-BART-driven metastasis in NPC. Our findings provide new insights into the metastasis of NPC regulated by EBV and advocate for developing clinical intervention strategies against NPC
Coordinated repression of BIM and PUMA by Epstein-Barr virus latent genes maintains the survival of Burkitt lymphoma cells.
While the association of Epstein-Barr virus (EBV) with Burkitt lymphoma (BL) has long been recognised, the precise role of the virus in BL pathogenesis is not fully resolved. EBV can be lost spontaneously from some BL cell lines, and these EBV-loss lymphoma cells reportedly have a survival disadvantage. Here we have generated an extensive panel of EBV-loss clones from multiple BL backgrounds and examined their phenotype comparing them to their isogenic EBV-positive counterparts. We report that, while loss of EBV from BL cells is rare, it is consistently associated with an enhanced predisposition to undergo apoptosis and reduced tumorigenicity in vivo. Importantly, reinfection of EBV-loss clones with EBV, but surprisingly not transduction with individual BL-associated latent viral genes, restored protection from apoptosis. Expression profiling and functional analysis of apoptosis-related proteins and transcripts in BL cells revealed that EBV inhibits the upregulation of the proapoptotic BH3-only proteins, BIM and PUMA. We conclude that latent EBV genes cooperatively enhance the survival of BL cells by suppression of the intrinsic apoptosis pathway signalling via inhibition of the potent apoptosis initiators, BIM and PUMA.Cell Death and Differentiation advance online publication, 29 September 2017; doi:10.1038/cdd.2017.150
The Viral and Cellular MicroRNA Targetome in Lymphoblastoid Cell Lines
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus linked to a number of B cell cancers and lymphoproliferative disorders. During latent infection, EBV expresses 25 viral pre-microRNAs (miRNAs) and induces the expression of specific host miRNAs, such as miR-155 and miR-21, which potentially play a role in viral oncogenesis. To date, only a limited number of EBV miRNA targets have been identified; thus, the role of EBV miRNAs in viral pathogenesis and/or lymphomagenesis is not well defined. Here, we used photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) combined with deep sequencing and computational analysis to comprehensively examine the viral and cellular miRNA targetome in EBV strain B95-8-infected lymphoblastoid cell lines (LCLs). We identified 7,827 miRNA-interaction sites in 3,492 cellular 3′UTRs. 531 of these sites contained seed matches to viral miRNAs. 24 PAR-CLIP-identified miRNA:3′UTR interactions were confirmed by reporter assays. Our results reveal that EBV miRNAs predominantly target cellular transcripts during latent infection, thereby manipulating the host environment. Furthermore, targets of EBV miRNAs are involved in multiple cellular processes that are directly relevant to viral infection, including innate immunity, cell survival, and cell proliferation. Finally, we present evidence that myc-regulated host miRNAs from the miR-17/92 cluster can regulate latent viral gene expression. This comprehensive survey of the miRNA targetome in EBV-infected B cells represents a key step towards defining the functions of EBV-encoded miRNAs, and potentially, identifying novel therapeutic targets for EBV-associated malignancies