36 research outputs found

    A Criterion for Brittle Failure of Rocks Using the Theory of Critical Distances

    Get PDF
    This paper presents a new analytical criterion for brittle failure of rocks and heavily overconsolidated soils. Griffith’s model of a randomly oriented defect under a biaxial stress state is used to keep the criterion simple. The Griffith’s criterion is improved because the maximum tensile strength is not evaluated at the boundary of the defect but at a certain distance from the boundary, known as the critical distance. This fracture criterion is known as the Point Method, and is part of the Theory of Critical Distances, which is utilized in fracture mechanics. The proposed failure criterion has two parameters: the inherent tensile strength, ó0, and the ratio of the half-length of the initial crack/flaw to the critical distance, a/L. These parameters are difficult to measure but they may be correlated with the uniaxial compressive and tensile strengths, óc and ót. The proposed criterion is able to reproduce the common range of strength ratios for rocks and heavily overconsolidated soils (óc/ót=3-50) and the influence of several microstructural rock properties, such as texture and porosity. Good agreement with laboratory tests reported in the literature is found for tensile and low confining stresses.The work presented was initiated during a research project on “Structural integrity assessments of notch-type defects", for the Spanish Ministry of Science and Innovation (Ref.: MAT2010-15721)

    Computational Crack Path Prediction Applied to Crack Arrestability by a Circular Hole

    No full text

    Quasi-automatic simulation of crack propagation for 2D LEFM problems

    No full text
    A strategy for quasi-automatic simulation of propagation of arbitrary cracks in two-dimensional, linear elastic finite element models is presented. This strategy has been implemented in FRANC2D (FRacture ANalysis Code 2D). An underlying winged-edge data structure enables automatic local modifications of the mesh along the propagation path without loss of any unaffected structural information. The finite element mesh is locally regenerated after each step of propagation by means of a robust remeshing algorithm. The propagation process is driven by linear elastic fracture mechanics concepts which are used to calculate mixed-mode stress intensity factors, predict incremental changes in trajectory, and assess local crack stability. Crack trajectories, obtained for different techniques of stress intensity factor calculation, and for different mixed-mode interaction theories, are presented and favorably compared to experimentally obtained paths. Copyright (C) 1996 Elsevier Science Ltd55232133

    Universal crack closure integral for SIF estimation

    No full text
    Numerical analysis of cracked structures often involves numerical estimation of stress intensity factors (SIFs) at a crack tip/front. A newly developed formulation called universal crack closure integral (UCCI) for the evaluation of potential energy release rates (PERRs) and the corresponding SIFs is presented in this paper. Unlike the existing element dedicated forms of crack closure integrals (MCCI, VCCI) with application limited to finite element analysis, this new numerical SIF/PERR estimation technique is independent of the basic stress analysis procedure, making it universally applicable. The second merit of this procedure is that it avoids the generally error-producing zones close to the crack tip/front singularity. The UCCI procedure, based on Irwin's original CCI, is formulated and explored using a simple 2D problem of a straight crack in an infinite sheet. It is then applied to some three-dimensional crack geometries with the stresses and displacements obtained from a boundary element program
    corecore