34 research outputs found

    Weighing matrices and spherical codes

    Get PDF
    Mutually unbiased weighing matrices (MUWM) are closely related to an antipodal spherical code with 4 angles. In the present paper, we clarify the relationship between MUWM and the spherical sets, and give the complete solution about the maximum size of a set of MUWM of weight 4 for any order. Moreover we describe some natural generalization of a set of MUWM from the viewpoint of spherical codes, and determine several maximum sizes of the generalized sets. They include an affirmative answer of the problem of Best, Kharaghani, and Ramp.Comment: Title is changed from "Association schemes related to weighing matrices

    On the Kernel of Z2s\mathbb{Z}_{2^s}-Linear Hadamard Codes

    Full text link
    The Z2s\mathbb{Z}_{2^s}-additive codes are subgroups of Z2sn\mathbb{Z}^n_{2^s}, and can be seen as a generalization of linear codes over Z2\mathbb{Z}_2 and Z4\mathbb{Z}_4. A Z2s\mathbb{Z}_{2^s}-linear Hadamard code is a binary Hadamard code which is the Gray map image of a Z2s\mathbb{Z}_{2^s}-additive code. It is known that the dimension of the kernel can be used to give a complete classification of the Z4\mathbb{Z}_4-linear Hadamard codes. In this paper, the kernel of Z2s\mathbb{Z}_{2^s}-linear Hadamard codes and its dimension are established for s>2s > 2. Moreover, we prove that this invariant only provides a complete classification for some values of tt and ss. The exact amount of nonequivalent such codes are given up to t=11t=11 for any s2s\geq 2, by using also the rank and, in some cases, further computations

    Spectrally Efficient Turbo Codes with Full Antenna Diversity

    No full text
    corecore