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Abstract

Mutually unbiased weighing matrices (MUWM) are closely related to
an antipodal spherical code with 4 angles. In this paper, we clarify the
relation between MUWM and the spherical codes, and determine the max-
imum size of a set of MUWM with weight 4 for any order. Moreover, we
define mutually quasi-unbiased weighing matrices (MQUWM) as a natu-
ral generalization of MUWM from the viewpoint of spherical codes. We
determine the maximum size of a set of MQUWM for the parameters
(d, 2, 4, 1) and (d, d, d/2, 2d). This includes an affirmative answer to the
problem of Best, Kharaghani, and Ramp.

1 Introduction

A weighing matrix W with weight k is a square (±1, 0)-matrix W of order
d such that WWT = kI, where I is the identity matrix of order d and WT

denotes the transpose of W . If k = d holds, the weighing matrix is a Hadamard
matrix. Weighing matrices have been classified for small orders and weights
[6, 16, 17, 11]. Note that the classification of self-orthogonal codes is used to
classify weighing matrices in [11]. As a generalization of real mutually unbiased
bases [4], Holzmann, Kharaghani and Orrick defined mutually unbiased weighing
matrices (MUWM) in [13]. Recently, Best, Kharaghani, and Ramp studied
MUWM further in [2]. In particular they obtained the maximum numbers of
MUWM with order n and weight w for (n,w) = (7, 4), (8, 4). Actually the
two maximum examples correspond to the roots in the E7, E8 lattices, but the
authors did not mention this.

The set of row vectors in a weighing matrix can be identified with a finite set
on a sphere where two distinct vectors are orthogonal. From the viewpoint of
this relationship, MUWM can be identified with an antipodal spherical code (or
equivalently lines through the origin in Rd) with only 4 angles, which is a union
of disjoint cross-polytopes. Classification of root systems allows us to determine
the maximum size of a set of mutually unbiased weighing matrices with weight
4.
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We put forward a new concept, a set of mutually quasi-unbiased weighing
matrices (MQUWM), which is a natural generalization of MUWM from the
perspective of antipodal spherical codes with 4 angles. As well as being a natural
generalization, a set of MQUWM leads to a set of MUWM. We prove that the
existence of some spherical codes is equivalent to that of MQUWM, and we give
constructions of such spherical codes from linear Z2,Z4-codes or root lattices.
As a consequence, we obtain the maximum size of a set of MQUWM or MUWM
for several parameters. The results include an affirmative answer to Conjecture
23 in [2], which says that for d = 22t+1, there are Hadamard matricesH1, . . . ,Hd

of order d so that the entries of HiH
T
j (i ̸= j) have absolute values 0 or 2t+1.

The rest of this paper is organized as follows. In Section 2, we define
MQUWM, and show the relation between MQUWM and spherical codes. In
Section 3, we give the maximum size of a set of MQUWM for the parameters
(d, 2, 4, 1). We give the maximum size of a set of MUWM with weight 4 by
the cross-polytope decomposition of the set of roots in root lattices. In Sec-
tion 4, we determine the maximum size of a set of MQUWM for the parameters
(d, d, d/2, 2d).

2 Mutually quasi-unbiased weighing matrices

In this section we introduce the concept of mutually quasi-unbiased weighing
matrices (MQUWM) and their connection to mutually unbiased weighing ma-
trices (MUWM). We also show that the existence of MQUWM is equivalent to
that of some spherical code.

Two weighing matrices W1,W2 with order d and weight k are said to be
quasi-unbiased for the parameters (d, k, l, a) if there exist a positive integer l
and a positive real number a such that (1/

√
a)W1W

T
2 is a weighing matrix with

weight l. In this case, l = k2/a holds. Weighing matrices W1, . . . ,Wf are said
to be mutually quasi-unbiased weighing matrices (MQUWM) for the parameters
(d, k, l, a) if any distinct two are quasi-unbiased for the parameters (d, k, l, a).

The concept of quasi-unbiasedness is defined for unit weighing matrices as
well [1]. In the real case, a is the square of an integer.

A set of MQUWM for the parameters (d, d, d, d) coincides with a set of
mutually unbiased bases (MUB) in Rd. A set of MQUWM is called a set of
mutually unbiased weighing matrices (MUWM) for the parameters (d, k, k, k)
coincides with a set of MUWM with order d and weight k [13]. Thus, the
concept of MQUWM is a generalization of both MUB and MUWM.

If {W1, . . . ,Wf} is a set of mutually unbiased weighing matrices with or-

der d and weight k, then the matrices I, (1/
√
k)W1, . . . , (1/

√
k)Wf satisfy the

property that any two row vectors belonging to different matrices have an in-
ner product in {0,±1/

√
k}. Multiplying the set {I, (1/

√
k)W1, . . . , (1/

√
k)Wf}

by the orthogonal matrix (1/
√
k)WT

1 from the right, the matrices (1/
√
k)WT

1 , I,
(1/

√
k)W2W

T
1 , . . . , (1/

√
k)WfW

T
1 satisfy the same property. Thus {(1/

√
k)WT

1 ,
(1/k)W2W

T
1 , . . . , (1/k)WfW

T
1 } is a set of mutually unbiased weighing matrices

with weight k.

2



Similarly, suppose {W1, . . . ,Wf} is a set of mutually quasi-unbiased weighing
matrices for the parameters (d, k, l, a). Then {(1/

√
a)W2W

T
1 , . . . , (1/

√
a)WfW

T
1 }

is a set of mutually unbiased weighing matrices with weight l. Not all MUWM
can be obtained from MQUWM in this way. The following is an example.

Example 2.1. There exists a set of 8 MUWM with weight 4 and order 7 [2]. If
we assume they come from MQUWM for the parameters (7, k, 4, a), then k ≤ 7
holds. Thus we have 4a = k2 ≤ 49, and a = 1, 4, 9. For (k, a) = (2, 1), there
does not exist a set of 9 MQUWM with weight 2 by Proposition 3.3 below. The
case (k, a) = (4, 4) corresponds to the MUWM case. For (k, a) = (6, 9), there
does not exist a weighing matrix of weight 6 and order 7, because if the order
is odd, then the weight must be a square [6]. Therefore we do not have the
corresponding MQUWM.

Let rSd−1 denote the sphere in Rd whose radius is r. For a finite subset
X of rSd−1, let A(X) be the set of usual inner products of two distinct vec-
tors in X. We say {X0, X1, . . . , Xf} is a cross-polytope decomposition of X if
{X0, X1, . . . , Xf} is a partition of X and elements of Xi consist of vectors of a
scalar multiple of a cross-polytope for each i ∈ {0, 1, . . . , f}. Let Ωd = {0,±1}d
and Ωd,k = {x ∈ Ωd |

∑
i x

2
i = k}. For a matrix A, denote the set of row vectors

of A as S(A).
The following proposition characterizes the existence of MQUWM in terms

of certain spherical codes.

Proposition 2.2. Let f , d, k and a be positive integers such that f ≥ 2. The
existence of the following are equivalent.

(1) A set {W1, . . . ,Wf} of mutually quasi-unbiased weighing matrices for the
parameters (d, k, k2/a, a).

(2) A subset X ⊂ Ωd,k with the property that A(X) = {±
√
a, 0,−k} and there

exists a cross-polytope decomposition {X1, . . . , Xf} of X.

Proof. (1)⇒(2): Let Xi = S(Wi)∪S(−Wi) for i = 1, . . . , f . Then X =
∪f

i=1Xi

with {X1, . . . , Xf} satisfies (2).
(2)⇒(1): For each i ∈ {1, . . . , f}, any vector in Xi has k entries of ±1, and

the remaining entries are 0 because X is in Ωd,k.
For each i ∈ {1, . . . , f}, we define the matrixWi = [v1, . . . , vd] by the vectors

Xi = {±v1, . . . ,±vd}. Since A(X) = {±
√
a, 0,−k}, the entries of WiW

T
j are

0,±
√
a for distinct i, j. ThusW1, . . . ,Wf form a set of MQUWM for the desired

parameters.

For MUWM, we obtain the following characterization.

Proposition 2.3. Let f , d and k be positive integers such that f ≥ 2. The
existence of the following are equivalent.

(1) A set {W1, . . . ,Wf} of mutually unbiased weighing matrices with weight
k.
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(2) A subset X ⊂
√
kSd−1 with the property that A(X) = {±

√
k, 0,−k} and

there exists a cross-polytope decomposition {X0, X1, . . . , Xf} of X.

Proof. (1)⇒(2): Let Xi = S(Wi)∪S(−Wi) for i = 1, . . . , f and X0 = S(
√
kI)∪

S(−
√
kI). Then X =

∪f
i=0Xi with {X0, . . . , Xf} satisfies (2).

(2)⇒(1): After transforming X0 to {±
√
ke1, . . . ,±

√
ked}, any vector in Xi

(i ∈ {1, . . . , f}) has k entries of ±1. The rest of the argument is the same as
that in Proposition 2.2.

3 MQUWM for the parameters (d, 2, 4, 1) and
MUWM with weight 4

In this section, we show an upper bound for the size of a set of MQUWM for
the parameters (d, 2, 4, 1) with examples attaining the bound. We also introduce
the relationship between MUWM with weight 4 and disjoint 2-frames in a root
lattice, and determine the maximum size of a set of MUWM with weight 4 for
any order.

We first introduce some basic definitions used in this section, as well as
results about disjoint 2-frames in root lattices.

An integral lattice is called a root lattice if it is generated by roots, which
are vectors whose norm is

√
2. It is well known that the irreducible root lattices

are Ad (d ≥ 2), Dd (d ≥ 4), E6, E7, and E8 (see for example [9]). The subset
F = {±v1, . . . ,±vd} in a lattice of rank d is called a k-frame if (vi, vj) = kδij ,
where δij is the Kronecker delta.

We prepare several results about disjoint 2-frames in a root lattice. Let ⊥i Li

denote the orthogonal direct sum of lattices Li. Let m(L) be the maximum
number of disjoint 2-frames in a lattice L.

Lemma 3.1. Let L =⊥i Li, where Li is an irreducible root lattice. We then
have m(L) = mini{m(Li)}.

Proof. Follows from the fact that if v is a root in L, then v is a root in Li for
some i.

We use the notation

(a1, . . . , ad)
P
d = {(aσ(1), . . . , aσ(d)) | σ ∈ Sd},

for (a1, . . . , ad) ∈ Rd, where Sd is the symmetric group of degree d.

Lemma 3.2. We have the following.

(1) For any d ≥ 2, m(Ad) = 0.

(2) For even d ≥ 4, m(Dd) = d− 1.

(3) For odd d ≥ 5, m(Dd) = 0.

4



(4) m(E6) = 0.

(5) m(E7) = 9.

(6) m(E8) = 15.

Proof. (1) The set of roots in theAd lattice can be expressed by (1,−1, 0, . . . , 0)Pd+1

which has the size d(d+ 1). Clearly the largest number of mutually orthogonal
vectors is ⌊(d+ 1)/2⌋. Therefore (1) follows.

(2) The set of roots in the Dd lattice can be expressed by (±1,±1, 0, . . . , 0)Pd .
Disjoint 2-frames in the Dd lattice are related to disjoint perfect matchings of
the complete graph Kd. Recall that a matching is a set of pairwise non-adjacent
edges, and is said to be perfect if every vertex is an endpoint of some edge in the
matching. From a perfect matching M of Kd, we obtain a 2-frame as follows

FM = {(v1, . . . , vd) ∈ Dd |
∑
k

v2k = 2, vi = ±1, vj = ±1, {i, j} ∈M}.

Since d is even, the complete graph Kd is 1-factorable, that is, the edge set
E(Kd) can be decomposed into d − 1 disjoint perfect matchings [12, Theorem
9.1]. This implies that the set of roots in the Dd lattice is decomposed into d−1
disjoint 2-frames. Therefore (2) follows.

(3) For odd d, the largest number of mutually orthogonal roots in the Dd

lattice is clearly d− 1. Therefore (3) follows.
(4) Assume that there exists a 2-frame in E6. Let L be a sublattice generated

by the 2-frame. Then |E6/L| = det(L)/det(E6) = 8/3, a contradiction.
(5) There exists a set of 8 MUWM with weight 4 and order 7 [2]. Adding

(±2, 0, . . . , 0)Pd to the set of row vectors in the 8 MUWM, we obtain 126 roots
that must form the set of roots of E7. This implies (5).

(6) There exists a set of 14 MUWM with weight 4 and order 8 [2]. Adding
(±2, 0, . . . , 0)Pd to the set of row vectors in the 14 MUWM, we obtain 240 roots
that must form the set of roots of E8. This implies (6).

Proposition 3.3. Let W = {W1, . . . ,Wf} be a set of mutually quasi-unbiased
weighing matrices for the parameters (d, 2, 4, 1). Then we have

f ≤ d− 1.

Proof. Every row vector of Wi is in (±1,±1, 0, . . . , 0)Pd whose size is 2d(d− 1).
This clearly shows the theorem.

There does not exist a weighing matrix with weight 2 for odd order [1,
6]. For even order, we have a set of MQUWM meeting the upper bound in
Proposition 3.3.

Theorem 3.4. Suppose d is even. Then there exists a set of d − 1 mutually
quasi-unbiased weighing matrices for the parameters (d, 2, 4, 1).
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Proof. By Lemma 3.2 (2), the roots (±1,±1, 0, . . . , 0)Pd of the Dd lattice are
decomposed into d− 1 disjoint 2-frames. By Proposition 2.2, we obtain a set of
MQUWM for the parameters (d, 2, 4, 1).

By Proposition 2.3, the existence of MUWM with order d and weight 4 is
equivalent to that of a subset X of 2Sd−1 having a cross-polytope decomposition
such that A(X) = {2, 0,−2,−4}. The set (1/

√
2)X can be identified with a

subset of roots in a root lattice, and the cross-polytopes correspond to disjoint
2-frames. If we determine the root lattice which has the maximum number of
disjoint 2-frames among all root lattices of a fixed rank d, then we can obtain
the maximum size of a set of MUWM with order d and weight 4.

Theorem 3.5. Let m(d) denote the maximum size of a set of MUWM with
order d and weight 4. Then the value m(d) is given in the following table, which
also indicates the root lattices of rank d having the maximum number m(d) of
disjoint 2-frames.

d 5 8 9 11 13 even d ≥ 4 (d ̸= 8)
m(d) 0 14 0 2 4 d− 2
lattice − E8 − D4 ⊥ E7 D6 ⊥ E7 Dd (d = 16, E8 ⊥ E8)

d odd d ≥ 15, d = 7
m(d) 8
lattice (⊥a copies E7) ⊥ (⊥b copies E8) ⊥ (⊥i (⊥ti copies Ddi))

even di ≥ 10, d = 7a+ 8b+
∑

i tidi (a ̸= 0)

For odd d ≥ 17, we have the lattice E7 ⊥ Dd−7 giving m(d) = 8 in the above
table.

Proof. For each rank d, we consider possible irreducible components of a root
lattice. By Lemmas 3.1 and 3.2, we obtain the maximum number of disjoint
2-frames.

4 MQUWM for the parameters (d, d, d/2, 2d)

In this section, we give an upper bound and maximal examples of MQUWM for
the parameters (d, d, d/2, 2d).

To construct mutually quasi-unbiased weighing matrices, we prepare two
codes, one over Z2 and the other over Z4. Let B(2,m) be a cyclic code of length
2m − 1 with defining set C1 ∪ C2 ∪ C3 ∪ C4, where Ci is the 2-cyclotomic coset
of i modulo 2m − 1 for i = 1, 2, 3, 4. The code B(2,m) is called the narrow-
sense BCH code with designed distance 5. Then the dual code B(2,m)⊥ has
the weights {0, 2m−1 − 2(m−1)/2, 2m−1, 2m−1 + 2(m−1)/2} [14, Table 11.2]. Let
C be the code generated by the extended code of B(2,m)⊥ and the all-ones
vector. Then C contains the first order Reed-Muller code RM(1,m) of length
2m as a subcode (see [14] for the Reed-Muller codes), and the set of its weights
is {0, 2m−1 − 2(m−1)/2, 2m−1, 2m−1 + 2(m−1)/2, 2m}.
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Define ϕ : Z4 → Z2
2 by ϕ(0) = (0, 0), ϕ(1) = (0, 1), ϕ(2) = (1, 1), ϕ(3) =

(1, 0). This map is extended component-wise to a map, also denoted by ϕ, from
Zd
4 to Z2d

2 . The map ϕ is called the Gray map. Let ZRM(1,m) be the first order
Z4-Reed-Muller code (see [14]). It is known that ϕ(ZRM(1,m)) = RM(1,m+1)
[10, Theorem 7].

Let h(x) be a primitive basic irreducible polynomial of degree m over Z4,
and ξ a root of h(x) so that ξ2

m−1 = 1. The Galois ring R = GR(4m) is defined
to be Z4[ξ]. Set T = {0, 1, ξ, . . . , ξ2m−2}. Then, any element c ∈ GR(4m) has
a unique 2-adic representation c = a + 2b for some a, b ∈ T . The Frobenius
map f from GR(4m) to itself is the ring automorphism that takes any element
c = a+2b to cf = a2+2b2. This automorphism f generates the Galois group of
GR(4m) over Z4 of order m. The relative trace from GR(4m) to Z4 is defined
by

T (c) = c+ cf + · · ·+ cf
m−1

(c ∈ GR(4m)).

The Z4-linear Kerdock code K is

K = {(T (λx) + ϵ)x∈T | λ ∈ GR(4m), ϵ ∈ Z4}.

The code K contains the first order Z4-Reed-Muller code ZRM(1,m) as a sub-
code [10, Section IV].

The ring R has the unique maximal ideal 2R, and R/2R is a finite field with
2m elements, identified with GF (2m), and tr denotes the usual trace map from
GF (2m) to Z2. Let h⊥ = {x ∈ T | tr(x̄h̄) = 0} for an element h ∈ T . Let Kh

be the code obtained by projecting K onto the set of coordinates h⊥.
The code ZRM(1,m) is spanned by 2RM(1,m) and 1 over Z4, where 1 is

the all-ones vector. The code RM(1,m) is defined recursively, by RM(1, 1) = Z2
2

and

RM(1,m) = {(u, u+ k1) | u ∈ RM(1,m− 1), k ∈ Z2}.

The automorphism group of the Reed-Muller code is the general affine group, in
particular contains the symmetric group of the coordinates [15, Chap. 13, Theo-
rem 24]. Thus, the restriction of the first order Z4-Reed-Muller code ZRM(1,m)
onto any half part of the coordinates is the first order Z4-Reed-Muller code
ZRM(1,m − 1). Therefore, the restriction of the first order Z4-Reed-Muller
code ZRM(1,m) as a subcode of K is the first order Z4-Reed-Muller code
ZRM(1,m − 1). Moreover, by [5, Theorem 4.1], for m odd, the weight distri-
bution of the Gray image ϕ(Kh) coincides with that of the extended code of the
dual code B(2,m)⊥.

Define ψ : Zd
2 → {1,−1}d as a map such that ψ((xi)

d
i=1) = ((−1)xi)di=1.

We use the Delsarte theory to prove an upper bound on the size of a set of
MQUWM for the parameters (d, d, d/2, 2d). See [7] for more information.

Theorem 4.1. Let W = {W1, . . . ,Wf} be a set of mutually quasi-unbiased
weighing matrices for the parameters (d, d, d/2, 2d). Then we have

f ≤ d.
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Proof. Let C be the set of the preimages of ψ for all the elements of S(Wi) ∪
S(−Wi) (1 ≤ i ≤ f). Letting α(z) = 2fd(1− 2z

d )(1− z
d )(1−

2z
d+

√
2d
)(1− 2z

d−
√
2d
)

be the annihilator polynomial of C, and Kk(z) the Krawtchouk polynomial of
degree k, we have the following expansion:

α(z) = f(
1

d
K0(z) +

1

d
K1(z) +

8

d2
K2(z) +

6

d(d− 2)
K3(z) +

6

d2(d− 2)
K4(z)).

Thus the linear programming bound [7, Theorem 5.23] shows that f ≤ d.

We use linear codes over Z2 or Z4 to obtain MQUWM. First we use linear
codes over Z2 which contain the first order Reed-Muller code RM(1,m) to
obtain MQUWM.

Lemma 4.2. Let C be a binary linear code of length d = 2m for a positive
integer m. Assume that the set with weights of C is {0, d/2± a, d/2, d} where a
is a positive integer with a < d, and C contains the first order Reed-Muller code
RM(1,m) as a subcode. Let {u1, . . . , uf} be a complete set of representatives for
C/RM(1,m). Then {ψ(ui+RM(1,m)) | i = 1, . . . , f} provides a cross-polytope
decomposition of ψ(C) with the inner product set {±2a, 0,−d}.

Proof. Note that, for each pair of codewords x, y ∈ Zd
2, the Hamming distance

of x and y is j if and only if ⟨ψ(x), ψ(y)⟩ is d − 2j. By the assumption on the
weights of C, A(ψ(C)) = {±2a, 0,−d}.

Put D = RM(1,m). Since {u1, . . . , uf} is a complete set of representatives
for C/D, {ψ(ui +D) | i = 1, . . . , f} gives a partition of ψ(C). Since the Reed-
Muller code has the weights {0, d/2, d}, each 1√

d
ψ(ui+D) for 1 ≤ i ≤ f forms a

cross-polytope, and the inner products between vectors in different ψ(ui +D)’s
are in 0,±2a. Therefore {ψ(ui + D) | i = 1, . . . , f} provides a cross-polytope
decomposition of ψ(C) with the inner product set {±2a, 0,−d}.

Next we use linear codes over Z4 which contain the first order Z4-Reed-
Muller code ZRM(1,m) to obtain MQUWM.

Lemma 4.3. Let C be a Z4-linear code of length d = 2m for a positive inte-
ger m. Assume that the set of weights of ϕ(C) is {0, d ± a, d, 2d} where a is
a positive integer with a < 2d, and C contains the first order Z4-Reed-Muller
code ZRM(1,m) as a subcode. Let {u1, . . . , uf} be a complete set of repre-
sentatives for C/ZRM(1,m). Then {ψ(ϕ(ui + ZRM(1,m))) | i = 1, . . . , f}
provides a cross-polytope decomposition of ψ(ϕ(C)) with the inner product set
{±2a, 0,−2d}.

Proof. Put D = ZRM(1,m). Since {u1, . . . , uf} is a complete set of represen-
tatives for C/D, {ϕ(ui + D) | i = 1, . . . , f} gives a partition of ϕ(C). Thus
{ψ(ϕ(ui +D)) | i = 1, . . . , f} gives a partition of ψ(ϕ(C)).

It is easily shown that ϕ(ui + D) has the same distance distribution as
RM(1,m + 1). Therefore each 1√

2d
ψ(ϕ(ui + D)) for 1 ≤ i ≤ f forms a cross-

polytope. The rest of the proof is same as Lemma 4.2.

8



We construct examples attaining the bound in Theorem 4.1 for d = 22t+1

where t is a positive integer. This gives an affirmative answer to Conjecture 23
in [2].

Theorem 4.4. For any positive integer t, there exists a set of mutually quasi-
unbiased weighing matrices for the parameters (d, d, d/2, 2d) attaining the bound
in Theorem 4.1, where d = 22t+1.

Proof. We provide two constructions of such MQUWM.
(1) Apply Lemma 4.2 and Proposition 2.2 to the code generated by the

extended code of the B(2, 2t+ 1)⊥ and the all-ones vector.
(2) Apply Lemma 4.3 and Proposition 2.2 to the code ϕ(Kh).

Remark 4.5. In the proof of Theorem 4.4, two maximal MQUWM are given.
The set of preimages of row vectors MQUWM by ψ is a binary code. The binary
code corresponding to (1) in the proof of Theorem 4.4 is linear, but the other
is non-linear.
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