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Abstract

In a distributed cooperative communication system, as the distances between different relay nodes and the
receiving nodes may be different, so the performances of distributed space time codes at receiving nodes may
badly be degraded if timing synchronization is not assured. In this article, extending the work of Damen et al. we
introduce the design of distributed threaded algebraic space-time (TAST) codes offering resistance to timing delay
off-set. We present some new and useful techniques of constructing delay tolerant TAST code for distributed
cooperative networks, which, like their brethren codes, are delay tolerant for any delay profile and achieve full
diversity for arbitrary number of relays, transmit/receive antennas, and input alphabet size. Our proposed codes
with minimum lengths achieve better performances than the existing codes retaining full rate and full diversity
with or without use of guard bands. Simulations results confirm our claim of obtaining better performances.

Keywords: space-time coding system, space-time block codes, threaded algebraic space-time (TAST) code, timing
offset, asynchronous transmission, cooperative relay networks, delay tolerant TAST codes.

1. Introduction
Wireless communication systems with multiple antennas
have recently attracted considerable interests [1-3]. Per-
haps, the reason is that the performance of a wireless
system is often limited by fading and may significantly
be improved by exploiting some sort of diversity, for
example spatial diversity. But on other hand equipping
the pocket size mobile handsets with additional radio-
frequency (RF) hardware is not feasible. Therefore,
thinking for alternate options, many researchers have
proposed different solutions and proposals.
Sendonaris et al. [4] proposed the idea of cooperative

diversity which enables the source/destination to use
nearby nodes as virtual antennas. In other words, the
nearby relay nodes may act as auxiliary receivers/trans-
mitters for the original transmitter/receiver. But, again
the main problem with cooperative terminals as indi-
cated by Li and Xia [5,6] is the asynchronous nature of
transmission which forces the traditionally designed
space-time codes to lose their diversity and coding gain
when used over distributed cooperative networks.

In fact in an unsynchronized cooperative network, the
data from different relays reach the destination after dif-
ferent delays. In [7], it was shown that all the well-
known codes lose their diversity at receiver. Mei et al.
[8] proposed a technique of using of guard bands
between blocks of symbols. The proposed scheme in [8]
could achieve full-diversity but the main drawback of
this technique is its limitation in the number of relays
(only two are allowed) and a huge rate loss due to the
insertion of guard bands.
The proposed delay tolerant codes for asynchronous

cooperative network of Li and Xia [5,6] were further gen-
eralized and refined in [9] by including full-diversity delay
tolerant space-time trellis codes of minimum constrained
length. In [7], delay tolerant distributed space-time block
codes based on threaded algebraic space-time (TAST)
codes [10] are designed for unsynchronized cooperative
network. The distributed TAST codes of [7] preserve the
rank of the space-time codewords under arbitrary delays
at the receiver. In a similar way, the authors in [7] further
extend their study in [11] by introducing delay tolerant
codes with minimum lengths. A lattice-based maximum
likelihood detector is used for decoding, which is compu-
tationally more complex than the decoupled decoding of
orthogonal space-time block codes.
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Following the framework of [7,11], in this article we
introduce some new and useful techniques for designing
delay tolerant TAST codes. The proposed codes achieve
full diversity and are flexible with respect to signalling
constellation, transmission rate, and number of trans-
mit/receive antennas. Our proposed codes achieve better
performances over the existing codes particularly at high
SNR. For ease to write, hereafter, we will use delto code
as short form of delay tolerant code.
The rest of the article is organized as follows. The

background and system model are given in Section 2.
Some construction techniques of delay tolerant space-
time codes are discussed in Section 3. Multiple threads
packing are given in Section 4. Section 5 elaborates the
construction methods for delto codes with minimum
lengths. Some construction examples are presented in
Section 6. Simulation results are given in Section 7 and
the conclusion is given in Section 8.

2. Preliminaries
2.1. System model
In a cooperative communication system, the communi-
cation between source and destination is modelled in
two phases.
In phase-I, the source sends information to the desti-

nation and at the same time this information is also
received by the relays.
In phase-II, the relays help the source by forwarding

or retransmitting the received information to
destination.
Initially proposed in [12], the relays use different pro-

tocols for processing and re-transmitting the received
signal from source to destination. In this article, we con-
sider decode-and-forward processing strategy at the
relays.
Since the relay nodes use common time slots and fre-

quency bandwidth for retransmissions of their signals,
the relays may expose to overlap both in time and fre-
quency, i.e. each node transmits a distinct coded bit
stream, the superposition of which forms a space-time
code. In what follows, the design and performance ana-
lysis of such distributed STBC codes will be our main
focus.
We assume the conventional MIMO system, modelled

with Nt transmit antennas corresponding to N relays
and Nr receive antennas at the destination. At time
instant t, the received signal is expressed in vector nota-
tion as

r̄t = Ht s̄t + n̄t (1)

where r̄t ∈ CNr×1 is the received vector at time t,

s̄t ∈ CNt×1 is modulated signal vector transmitted during

the tth symbol interval, Ht ∈ CNr×Nt is the channel

matrix and n̄t ∈ CNr×1 denotes additive white Gaussian
noise. The Nt × T modulated space-time codeword
matrix s is transmitted over T symbol intervals by taking
s̄t to be the tth column of s. The channel is assumed to
be quasi-static, i.e. the channel transfer matrix Ht is
constant over a codeword interval but is generated ran-
domly and independently from codeword to codeword.
We further assume that no error occurs between
sources and relays.
The nature of processing strategies at relays greatly

impact the code design and decoding complexity, and it
is beyond the scope of this article to discuss this issue
in detail. In the simplest case, the timing offset from dif-
ferent relays at reception may be avoided by use of
guard bands or some sort of timing advance protocols
[13].
If the maximum possible timing offset among the dif-

ferent relay’s transmissions is L’ symbol intervals and a
pad of duration L’ symbols is used by each relay
between its coded transmissions, then the different com-
posite space-time codewords never overlap in time. Each
space-time codeword can be decoded individually. For
short space-time block codes, the significant rate loss
induced by the use of fill symbols or guard intervals can
be mitigated by allowing the relays to transmit its coded
streams one after another [13], but for long block size
the code rate loss is an open problem. In what follows,
we present the construction of space-time codes which
are robust to arbitrary delays without insertion of guard
bands.

2.2. Delay tolerance of space-time codes
For the sake of completeness we review some notations
from [7]. Let S be an STBC code with codeword of
size Nt × T. Assume s1 and s2 are two distinct code-
words of S . The diversity order of S is the minimum
rank of the difference matrix s1-s2 over all pairs of dis-
tinct codeword in S . This condition is referred as rank
criterion [14].
For our purposes, the transmitted symbols will finitely

be generated from an underlying finite constellation
using algebraic number field constructions. Let A
denote the two-dimensional constellation chosen from Z
[i] or Z[j], and let F = Q(i) or Q(j) denote the field of
complex rational numbers and complex Eisenstein
rational numbers, respectively. Let F(θ) be an extension
field of degree [F(θ): F]. Then, the fundamental alphabet
for our constructions is given by

� =

{
x =

P−1∑
k=0

ukθ k : uk ∈ A
}

(2)

where integer P ≤ [F(θ): F].
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Each transmitted symbol s Î s is from Ω or, more
generally, is from its image f(Ω) under some specified
one-to-one mapping: f: Ω®C.
A space time code S is said to be τ-delto for the

quasi-synchronous cooperative diversity scenario, if the
difference between every non-trivial pair of codewords
in S retains full rank even though its rows are trans-
mitted with arbitrary delays of duration at most τ sym-
bols [15].
If all relays start transmitting all rows of a distributed

STBC simultaneously, then different rows will reach
destination with different delays δi ≤ δmax, iÎ{1, 2, ...,
N}. If all relays continuously transmit the rows of differ-
ent distributed STBC at different blocks, then the data
of two consecutively transmitted STBC can be over-
lapped due to the timing errors. All relays start trans-
mitting the assigned rows of the codeword
simultaneously and as the values of the relatives delays
are unknown, therefore each of them waits for δmax

time interval after the transmission of the codeword is
finished. Due to the delays in the reception, an Nt × T
transmitted STBC s is transmitted into an Nt × (T +
δmax) codeword at the receiver as follows

s� =

⎡
⎢⎢⎢⎣

01×δ1 s(1, :) 01×(δmax−δ1)

01×δ2 s(2, :) 01×(δmax−δ2)

...
...

...
01×δNt

s(Nt, :) 01×(δmax−δNt )

⎤
⎥⎥⎥⎦ (3)

where a 0 represents no transmission and δmax

denotes the maximum of the relative delays. Let W sym-
bols be encoded into the original STBC S ∈ CNt×T , then
it can be seen from (3) that they take T + δmax time
interval for transmitting s. Hence, the effective data rate
in the asynchronous cooperative network is W/T + δmax,
which is less than the data rate in a synchronous system
W/T for which the STBC is traditionally designed.
Now, a space-time code S is called τ-delto if for all

delay profiles Δ with δmax(Δ) ≤ τ, the effective space-
time code S� achieves the spatial diversity as high as
that of S . A space-time code is fully delto if it is delto
for any positive integer τ. For more detail examples, the
readers are referred to [7]. Furthermore, in [7], it has
also been proved that the space-time codes constructed
from cyclic division algebra [16], including the well-
known Golden code, are also not delay tolerant.

3. Construction of delto codes
In this section, we try to develop two useful techniques
for construction of STBC codes based on threads that
are delay tolerant. The constructed codes achieve maxi-
mal spatial diversity and are fully delto. They are also
flexible with respect to signalling constellation,

transmission rate, number of transmit/receive antennas
and decoder complexity. For most of the cases, we use
the fundamental signalling alphabet Ω derived from
constellation A in accordance with (2).
A layer is a mapping strategy that assigns a particular

transmit antenna to be used at each individual time
interval of a code word [17]. A layer is called a thread
when it spans in spatial and temporal dimensions in
such a way that at each time instant: 1 ≤ t ≤ T at most
one antenna is used [18]. With a minor modification we
relax the condition of antenna usage at each time inter-
val and allow the signalling intervals to be empty, i.e. no
symbol be transmitted from any antenna during certain
signalling intervals.
We use a technique very similar to that of Huffman

(HM) binary tree. We develop an HM binary tree of Nt

+ 1 nodes. We assume that nodes 2 (node 1 is dis-
carded) to Nt + 1 of the HM binary trees represent the
rows 1 to Nt of codeword matrices, respectively. We
further assume that the weights or more precisely ham-
ming weights of nodes mi, i = 1, 2, ..., Nt + 1 are such
that mi > mi+1 > · · · > mNt+1 and
mNt−1 > +mNt +mNt+1 . With these assumptions, we may
construct the HM tree in a straightforward way starting
from bottom node coming up to top node.
As an example, consider the HM thread Λ defined for

Nt transmit antennas, where

THM
Nt

= Nt ×
⌈
Nt

2

⌉
+

(
1 + (−1)Nt

2

)⌈
Nt

2

⌉
(4)

For Nt = 3 and 4, to obtain HM threads, we draw two
HM binary trees in Figures 1 and 2, respectively.
Putting the obtained numerical values in matrix form

in a row end-to-start manner by non-zero elements, i.e.
after discarding the first node (i.e. mi) of the tree, the mi

+2 th row is started immediately from next column in
which mi+1 th has its last non-zero element. The process
is repeated till mNt+1 th row. The empty positions are
filled by zeros, we get

�HM
3 =

⎡
⎣1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 1 1

⎤
⎦ (5)

and, for Nt = 4, we have

�HM
4 =

⎡
⎢⎢⎣
1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1

⎤
⎥⎥⎦ (6)

As an alternate method, we can develop such type of
codeword matrices by using the following expression,
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where the thread ΛHM has (i, j) entry defined as

�(i, j) =

{
1, if i =

(⌊
log2j + δj,7

⌋
+ 1

)
0 , otherwise

(7)

where the Kronecker delta function is defined as

δj,7 =

{
1 if j = 7

0, otheriwse
(8)

Lemma 1: Let S = ��HM denote the space-time code
in which the repetition code over alphabet Ω is used
over the thread ΛHM, then S achieves full spatial diver-
sity and is fully delto.
Proof: One can see that S encompasses multiples of

ΛHM, so all the differences between codeword in S are
multiples of ��

HM , hence it is easy to show that ��
HM is

of full rank for all delay profiles. One can see that
regardless of Δ size, the ith row of ��

HM always contains
the same number of ones as its index (i.e. mi = i),
whereas the total number of non-zero elements in all

lower numbered rows is i(i-1)/2. Hence, for each i, there
is a column in ��

HM for which the entry in the ith row

is 1 and all the elements above it are zeros. The set of
these columns for i = 1 to Nt forms an Nt × Nt subma-
trix that is lower-triangular with ones on the diagonal.
Since this submatrix has determinant 1, so we can say

that ��
HM is of full rank.

One can see from the code structure that any permu-
tation of rows or columns may be done in ΛHM to pro-
duce an equivalent thread yet preserving the properties
of its parent code, deletion of rows in ΛHM also would
not affect the delto property.
Now, generalizing the obtained results over DAST

codes [19], for t = 1, 2, ...,THM
Nt

, consider ft: Ω ® C be a

one to one function, and we derive the corresponding
thread function matrix FΛ(x) for thread ΛHM by repla-
cing the non-zero elements in matrix ΛHM by the func-
tion FΛ(x). For example, for Nt = 4, we have

F�(x) =

⎡
⎢⎢⎣
f1(x) 0 0 0 0 0 0 0 0 0
0 f2(x) f3(x) 0 0 0 0 0 0 0
0 0 0 f4(x) f5(x) f6(x) 0 0 0 0
0 0 0 0 0 0 f7(x) f8(x) f9(x) f10(x)

⎤
⎥⎥⎦

Lemma 2: let S denote space-time code of form sa =
FΛ (a) for some a Î Ω. Then, S achieves full diversity
and is delto.
Proof: If a and b are two distinct codewords of S ,

then the difference codeword matrix fΛ (a) and fΛ (b)
will adopt the same form as ΛHM by replacing 1 for

t = 1, 2, ...,THM
Nt

by the difference matrix ft(a)-ft(b).

Let an arbitrary delay profile Δ be applied to the dif-
ference matrix fΛ(a)-fΛ(b) to produce the matrix FΔ,
then, as proved before, the columns t1, t2, ..., tNt in FΔ

form a lower triangular matrix with diagonal entries
equal to fti(a) − fti(b) for i = 1, 2, ..., Nt and this matrix
has determinant:

D =
Nt∏
i=1

(fti(a) − fti(b)) (9)

Since all the functions fti are one to one, so the deter-
minant D will be zero subject to condition if a = b, like-
wise FΛ(a) will be equal to FΛ(b) if a = b. Therefore, the
matrix FΔ is full rank.

Another method
The HM method for construction of codeword matrices
may be lethargic for large value of Nt, as one can see
from the code structure that there is a large disparity or
unevenness in usage of antennas. Here, we develop
another method of thread matrix construction in which
each antenna is used for the same number of time. We
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Figure 1 Construction of HM binary tree for three transmit
antennas.
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Figure 2 Construction of HM binary tree for four transmit
antennas.
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call this technique of thread construction as uniform use
(UU) threads matrices. In this particular scheme, each
transmit antenna is used twice per codeword. The two
non-zero elements of the codeword matrix in row i (i =

1, 2, ..., Nt) are spanned by ui =
⌊
2i−2 +

i
Nt

⌋
,a where u

is the number of zeros between two non-zero elements
in row i.
For example, for Nt = 3 and 4, we have the following

two matrices, where TUU
Nt

= 2Nt

�UU =

⎡
⎣0 1 1 0 0 0
0 0 0 1 0 1
1 0 0 0 1 0

⎤
⎦ (10)

�UU =

⎡
⎢⎢⎣
0 1 1 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 0 1
1 0 0 0 0 0 1 0

⎤
⎥⎥⎦ (11)

The first non-zero element in row i lies in columns j
according to Table 1.
The UU design is fully delto and offers full diversity.
Equivalently, we can construct such codeword

matrices for UU threads as follows, where (i, j) th entry
is defined as

�(i,j) =

{
1 , if idel mod Nt

=
⌊
log2j + δj

⌋
0 , otherwise

(12)

where delmod is ordinary modulo Nt function, and is
not taken into account when Kronecker delta function δj
is active, and the Kronecker delta function is defined as

δj =

{
P(i+2), if Pi = j

0 , otherwise
(13)

where P is a vector of first T elements of safe prime
numbers.b.

Lemma 3: Let S = ��UU be the Nt × TUU
Nt

space-time

code in which the repetition code is used over the
thread ΛUU. Then, S achieves full spatial diversity and is
fully delto.

Proof: As one can see from code structure, it is easy to
show that for any delay profile Δ, the ith row of the
thread matrix cannot be expressed as a linear combina-
tion of rows 1 through Nt-1.
The two non-zero elements in ith row are separated

by u zero elements, where u is given by

ui =

⎧⎪⎨
⎪⎩
0 if i = 1

2i−2 + 1 if i = Nt

2i−2 if 2 ≤ i < Nt

(14)

or, more precisely

ui =
⌊
2i−2 +

i
Nt

⌋
(15)

Furthermore, the leading non-zero element in row i1
and iNt always starts from column j2 and j1, respectively,
whereas the second non-zero element of same rows lies
in j2 and j2Nt−1 , respectively. Likewise, for the rest of
the rows, the second non-zero elements lay in position
ji + ϖ, where ϖ is the position of leading non-zero ele-
ment in that row.
We know that in the linear combination of even

weight rows, if the leading non-zero element in row Nt

lies in column ji, then there must be an odd number of
rows having a non-zero element in column ji [7]. There-
fore, we say that our proposed codeword is fully delto.

4. Multiple thread delto codes
In previous section, we discussed different techniques
for construction of single thread delto codes. To
improve the rate of these codes, we combine multiple
delto threads in single codeword matrices. There is
more than one way of packing such threads. Here, we
discuss two methods as follows.

4.1. Cyclic shift
This method has a very simple and interesting structure.
We use to shift each column of thread matrix Λk (k = 1,
2, ..., Nt) by one element in thread matrix Λk+1. We
repeat the process till the last thread ΛM.
Let Λk be thread k for Nt transmit antennas and T

vector channel uses. Then, for Nt = 4 and

THM
Nt

= Nt ×
⌈
Nt

2

⌉
+

(
1 + (−1)Nt

2

)⌈
Nt

2

⌉
, for thread

matrix �HM
1 , we get

�HM
1 =

⎡
⎢⎢⎣
1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1

⎤
⎥⎥⎦ (16)

Table 1 Positions of leading non-zero elements in
respective UU threads matrices

I/J NT = 3 NT = 4 NT = 5

1 2 2 2

2 4 4 6

3 1 5 4

4 - 1 5

5 - - 1
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For ease to understand, we replace the non-zero ele-
ments in their respective locations by alphabets a, b, c
and d in Λ1 to Λ4, respectively. So, the above codeword
matrix is reproduced as

�HM
1 =

⎡
⎢⎢⎣
a1,1 0 0 0 0 0 0 0 0 0
0 a2,2 a2,3 0 0 0 0 0 0 0
0 0 0 a3,4 a3,5 a3,6 0 0 0 0
0 0 0 0 0 0 a4,7 a4,8 a4,9 a4,10

⎤
⎥⎥⎦ (17)

After making a shift by one element in each column
in above codeword matrix, we get

�HM
2 =

⎡
⎢⎢⎣
0 0 0 0 0 0 b1,7 b1,8 b1,9 b1,10
b2,1 0 0 0 0 0 0 0 0 0
0 b3,2 b3,3 0 0 0 0 0 0 0
0 0 0 b4,4 b4,5 b4,6 0 0 0 0

⎤
⎥⎥⎦ (18)

After making a shift by one element in each column
in above codeword matrix, we get

�HM
3 =

⎡
⎢⎢⎣
0 0 0 c1,4 c1,5 c1,6 0 0 0 0
0 0 0 0 0 0 c2,7 c2,8 c2,9 c2,10
c3,1 0 0 0 0 0 0 0 0 0
0 c4,2 c4,3 0 0 0 0 0 0 0

⎤
⎥⎥⎦ (19)

After making a shift by one element in each column
in above codeword matrix, we get

�HM
4 =

⎡
⎢⎢⎣
0 d1,2 d1,3 0 0 0 0 0 0 0
0 0 0 d2,4 d2,5 d2,6 0 0 0 0
0 0 0 0 0 0 d3,7 d3,8 d3,9 d3,10
d4,1 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎦ (20)

Equivalently, we can construct such a codeword

threads matrix �HM
Nt

by following expression

(ai,j)k =

{
1, if i = XmodNt

(⌊
log2j + δj,7

⌋
+ k

)
0 , otherwise

(21)

where Xmod is ordinary modulo Nt function with a
small difference that it replaces the output zero by Nt,
and the Kronecker delta function is defined as

δj,7 =

{
1 if j = 7

0, otheriwse
(22)

From this packing of threads, we get an Nt × T space-
time code S which transmits Nt repetition codes simul-
taneously, one per thread by selecting the code code-
words [7].

s = a1�1 + a2�2 + · · · + aNt�Nt (23)

For a1, a2, ..., aNt ∈ � arbitrary.

(Note that the notations a, b, c, d... used in above
codewords matrices are replaced by a1, a1, ..., aNt ).
For HM thread structure when Nt = 4 and

T = Nt ×
⌈
Nt

2

⌉
+

(
1 + (−1)Nt

2

)⌈
Nt

2

⌉

by packing threads �HM
1 to �HM

4 , we get

s =

⎡
⎢⎢⎣
a d d c c c b b b b
b a a d d d c c c c
c b b a a a d d d d
d c c b b b a a a a

⎤
⎥⎥⎦ (24)

Similarly for Nt = 3, we have

s =

⎡
⎣a c c b b b
b a a c c c
c b b a a a

⎤
⎦ (25)

and when Nt = 2, we have

s =
[
a b b
b a a

]
(26)

In case of UU threads
UU threads can also be packed in the same way as we
did above for HM threads.
For Nt = 4 and T = 2Nt, we have

�UU
1 =

⎡
⎢⎢⎣
0 a1,2 a1,3 0 0 0 0 0
0 0 0 a2,4 0 a2,6 0 0
0 0 0 0 a3,5 0 0 a3,8
a4,1 0 0 0 0 0 a4,7 0

⎤
⎥⎥⎦ (27)

�UU
2 =

⎡
⎢⎢⎣
b1,1 0 0 0 0 0 b1,7 0
0 b2,2 b2,3 0 0 0 0 0
0 0 0 b3,4 0 b3,6 0 0
0 0 0 0 b4,5 0 0 b4,8

⎤
⎥⎥⎦ (28)

�UU
3 =

⎡
⎢⎢⎣
0 0 0 0 c1,5 0 0 c1,8
c2,1 0 0 0 0 0 c2,7 0
0 c3,2 c3,3 0 0 0 0 0
0 0 0 c4,4 0 c4,6 0 0

⎤
⎥⎥⎦ (29)

�UU
4 =

⎡
⎢⎢⎣
0 0 0 d1,4 0 d1,6 0 0
0 0 0 0 d2,5 0 0 d2,8
d3,1 0 0 0 0 0 d3,7 0
0 d4,2 d4,3 0 0 0 0 0

⎤
⎥⎥⎦ (30)

and packing all the four threads into a single code-
word matrix, we get
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s =

⎡
⎢⎢⎣
b a a d c d b c
c b b a d a c d
d c c b a b d a
a d d c b c a b

⎤
⎥⎥⎦ (31)

For Nt = 3, we get

s =

⎡
⎣b a a c b c
c b b a c a
a c c b a b

⎤
⎦ (32)

and for Nt = 2, get

s =
[
b a a b
a b b a

]
(33)

4.2. Algebraically packed multiple-threads
The codes constructed in Section 3 are individually
delto and fully diverse, but when they are packed
together in a single codeword matrix in a way as we did
above, it is not guaranteed that they are delto and fully
diverse because the threads may interact in a detrimen-
tal way [7]. The remarkable work of El Gamal and
Damen [10] can be used to make it sure that the packed
codewords are delto and fully diverse.
Let Λ be the HM thread for Nt transmit antennas and

T = Nt ×
⌈
Nt

2

⌉
+

(
1 + (−1)Nt

2

)⌈
Nt

2

⌉
vector channel

uses. Let fi, j: Ω ® C be a one-to-one function for each
choice i = 1, 2, ..., Nt and j = 1, 2, ..., T. For each thread,
Λk derived from Λ in accordance with (6), form the
threaded matrix function Fk(x) whose (i, j) th entry is fi,
j(x)·Λk(i, j) [[7], th: 12].
Consider the Nt × T space-time code S with L ≤ Nt

active threads consisting of all modulated codewords of
the form:

s(a1, a2, ..., aL) = F1(a1) + φF2(a2) + · · · + φL−1FL(aL)

for a1, a2, ..., aL Î Ω arbitrary.
Then, S achieve full spatial diversity and is fully

delto.
Proof: Assume a and b are two distinct codewords and

are subject to the delay profile Δ.
Then, sΔ is given as

s� = s� (a1, a2, ..., aL) − s� (b1, b2, ..., bL)

=
L∑
i=1

φi−1F�
i (ai, bi)

where

F�
i (ai, bi) = F�

i (ai) − F�
i (bi)

Let m denote the largest index for which am ≠ bm but
ai = bi for i >m. Then,

s� =
m∑
i=1

φi−1F�
i (ai, bi) (34)

The non-zero elements in main diagonal form a sub-
matrix, and are given by

φm−1 [fi,ji(am) − fi,ji(bm)
]

for i = 1, 2, ...,Nt

This submatrix has determinant

D(φ) = G(φ) + φNt(m−1)
Nt∏
i=1

(
fi,ji(am) − fi,ji(bm)

)
(35)

where G(j) is a polynomial in j over F(θ) of degree

<Nt(m-1). Since the functions fi,ji are all one-to-one and
am ≠ bm , Equation (35) is a non-trivial polynomial in j
of degree Nt(m-1) over F(θ).
By design choice, j is not the root of any non-trivial

polynomial of degree Nt(m-1) over F(θ). Hence, D(j) ≠
0, so the matrix is of full rank. We conclude that S
achieves full spatial diversity and is fully delto.
Code rate
In the multiple thread code construction, the rate of the
space-time code S is given [7] as

R =
PL

T
log2A bpcu

Thus, we can make S full rate by proper selection of
parameters L and P for a given set of code parameters
Nt, Nr and T. In other words, we make the modulation
parameters flexible to match the specified spatio-tem-
poral structure. This selection of modulation parameters
can be done in different ways, a natural choice is to take
L = min(Nt, Nr) and P = T.

4.3. Packing of threads (when L <Nt)
In previous section, we developed a technique of packing
the single thread codeword matrices into L = Nt threads
codeword matrices. Selecting fewer threads than Nt may
increase the spectral efficiency of the code without
increasing the constellation size by reducing the code
interval length, but for that we have to relax the condition
of antenna usage per time unit within each thread. In this
section, we pack the threads in such a way that we allow
the usage of more than one antenna per time unit within
each thread.
4.3.1. HM thread
We denote the smallest code length for transmission of

L threads from Nt transmit antennas by TSHM
Nt ,L . From

Section 3, we know that for HM threads the total
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number of channel usage is
n1 + n2 + · · · + nNt = Nt(Nt + 1)/2 , where ni = i.
Now let h1, h2, ..., hL denote permutation assigning

the values n1 + n2 + · · · + nNt to the transmit antennas
1,2,...,Nt. Then, according to [7], we may write

TSHM
Nt ,L = min

η1,η1,...,ηL
max

m=1,2,...,Nt

{
L∑
i=1

ηi(m)

}
(36)

From (36), for L = 1, we have

TSHM
Nt ,1 = Nt (37)

and for L > 1, we have

TSHM
Nt ,L =

⎡
⎢⎢⎢⎢⎢⎢⎢

L

(
Nt ×

⌈
Nt

2

⌉
+

(
1 + (−1)Nt

2

)⌈
Nt

2

⌉)

Nt

⎤
⎥⎥⎥⎥⎥⎥⎥

(38)

For Nt = 4 and L = 1 and 2, we have for example

sSHM
4,1 =

⎡
⎢⎢⎣
a 0 0 0
a a 0 0
a a a 0
a a a a

⎤
⎥⎥⎦ (39)

sSHM
4,2 =

⎡
⎢⎢⎣
a b b b b
a a b b b
a a a b b
a a a a b

⎤
⎥⎥⎦ (40)

4.3.2. UU thread
We denote the smallest code length for transmission of

L threads from Nt transmit antennas by TSUU
Nt ,L . From

Section 3, we saw that for UU thread, the maximum
expansion between two channel uses is 2Nt-1. So, we
may deduce that

TSUU
Nt ,L =

[⌊
L
Nt

⌋
+ (2Nt − 1)

]
(41)

For example, for Nt = 4 and L = 1, we have

sSUU
4,1 =

⎡
⎢⎢⎣
0 a a 0 0 0 0
a 0 a 0 0 0 0
a 0 0 a 0 0 0
a 0 0 0 0 0 a

⎤
⎥⎥⎦ (42)

For Nt = 4, L = 2

sSUU
4,2 =

⎡
⎢⎢⎣
b a a 0 0 0 b
a 0 a b 0 0 b
a 0 0 a b 0 b
a b b 0 0 0 a

⎤
⎥⎥⎦ (43)

when Nt = 4 and L = 3

sSUU
4,4 =

⎡
⎢⎢⎣
d a c c a b d b
c b d d b a c a
b c a a c d b d
a d b b d c a c

⎤
⎥⎥⎦ (44)

For Nt = 3 and L = 3 we have for example

sSUU
3,3 =

⎡
⎣b a a c b
c b b a c
a c c b a

⎤
⎦ (45)

Such type of codes will work efficiently for larger
value of L. For smaller value of L, we can delete zero
columns in (17) and (18), even after amputation of these
columns the obtained codes still retain their properties
of full diversity and delto.

5. Minimum length delto codes
The delto codes discussed in the previous sections have
the codes length T >Nt; therefore, for large size Nt their
performances may decrease. In this section, we extend
our work and propose a technique for constructing
delto codes with minimum delay length T = NT. Our
construction method is based on tight packing of the
HM threads as developed in Section 3.
In fact, an Nt × T MIMO codeword matrix is a strand of

algebraic SISO codes separated by Diophantine numbers
j, and the difference between distinct Nt × Nt submatrices
is the diversity order of the codeword matrix [[10], th: 4].
In [11], the authors show that the minimum length

delto STBC code s can be constructed by multiplying
the designed thread codeword matrix with an Nt × T
matrix C, whose entries are re-arrangement of c̄ ∈ C (C
being a full diversity one dimensional block code of
length NtT).
Of course the main problem in designing such type of

codes is the design of thread codeword matrix. In [11],
the authors have proposed two types of such matrices
for two and three relays. In what follows, we discuss a
new technique for construction of thread codeword
matrices, and we claim that our proposed code get bet-
ter performance over [11], particularly at high SNRs.

5.1. Construction of thread codeword matrix
Recall from Section 3 for HM generalized thread con-
struction, here we develop a simple construction

method for TML
Nt

= Nt as follows:

▪ For row i, (i = 2, ..., Nt), define a complex number
j whose power of 2 is simple addition of non-zero
elements of row i in HM single thread codeword
matrix.
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▪ In the first row of HM single thread codeword
matrix, the i-tuples of zeros above the non-zero ele-
ments in ith row (i = 2, ..., Nt) are replaced by ji-1.
▪ Fill the empty positions by 1.

For example for Nt = 3, the �HM
3 matrix from (3) can

be represented as

�ML
3 =

⎡
⎣1 φ φ2

1 φ4 1
1 1 φ8

⎤
⎦ (46)

For ease to understand, let ai, j represent the location
of j in (46).
We show that by an appropriate selection of para-

meters j and one-dimensional code C , the resulted
space-time code S is delto for every delay profile.
Now let Ξ denote those Nt-tuples of ai , j in ΛML,

which are taken from different rows, and let φαmax be

the highest number used, where αmax = 2Nt .
Lemma 4: Let S = ��ML denote the space-time code in

which the repetition code (with codewords of length N2
t )

over alphabet Ω is used as one-dimensional SISO code in
conjunction with thread ΛML, then S achieves full spatial
diversity and is fully delto, if the following conditions are
satisfied.

▪ j is chosen as an algebraic or transcendental
number such that the numbers

{
1,φ, ...,φαmax

}
are

algebraically independent over the field F(θ) that
contains Ω [20].
▪ The parameters ai , j are chosen such that the
summation of the entries of every Nt-tuples in Ξ is
unique.

Since the one-dimensional code C is a repetition code,

it is sufficient to show that ��
ML is full rank for every

arbitrary delay profiles � = (δ1, δ2, . . . , δNt ) . To verify
the diversity order of the code, we need to find out the

largest square submatrix in ��
ML which is full rank.

▪ First column is chosen such that it contains a
non-zero element in row Nt.
▪ jth Column is chosen such that it contains a
power of j at ith row (i, j = 2, ..., Nt-1)
▪ As a last step chose Ntth column (for which we
have only one choice)

As a result, the obtained Nt × Nt submatrix has at
least one thread L with all non-zero elements containing
Nt elements of power j.

If the sum of the powers of j in L threads is m, then
the determinant of the submatrix is given by

det(D) = g(φ) + φm (47)

where g(j) is a polynomial of j with degree less than
or equal to amax. Since m is unique, g(j) does not con-
tain any term in jm. Therefore, if the number{
1,φ, ...,φαmax

}
are algebraically independent over F(θ),

det(D) is not zero and the code achieves full diversity
for every delay profile. Due to the nice structure of our
codes, we may use more than one method to verify the
determinant of the largest Nt × Nt submatrix, for exam-
ple we can use (35) or the same proof as used for
Lemma 1.

6. Examples
In this section, we lay down some examples of delto dis-
tributed TAST codes. Similar to of TAST codes [10],
the construction of delto codes are carried out by
appropriate selection of the SISO codes and the num-
bers j. Full-diversity SISO codes over fading channels
can be constructed by applying full-diversity unitary
transformations to input signals drawn from lattices or
multidimensional constellations carved from a ring.
Damen et al. [20] provided a systematic way of con-
structing Nt × Nt fully diverse unitary transformations
over the field that contains the elements of information
symbols, as

X = R.U (48)

where R = WH.diag(D), W being a discrete Fourier
transform matrix built from the transmit QAM symbols
vector of size P; we have

W(k, l) = 1/
√
P. exp(−2jπ .(k − 1).(l − 1)/P), k, l = 1, 2, ..,P

and D is a vector of the following form

D =
[
1, θ1/P, θ2/P, ..., θ (P−1)/P

]
(49)

where θ is a transcendental or an algebraic numbers
of suitable degree to guarantee the full diversity of the
rotation [20].
For Nt = Nr = L = 2, P = T = 3, using HM thread con-

struction guideline from Section 3, we get delto distribu-
ted TAST code as follows:[

x1 φy2 φy3
φy1 x2 x3

]
(50)

where X = (x1, x2, x3)
T = R.U and Y = (y1, y2, y3)

T = R.
V, U, V are two 3 × 1 vectors of QAM symbols and R3

is optimal 3 × 3 complex rotation according to (49). By
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setting j = exp(2πi/15), this code provides the rate of 2-
QAM symbols per channel use and achieves a transmit
diversity of 2 regardless of the delay profile.
Another example is the well-known Alamouti code,

which is not delto, but its extension to HM threads
makes it delto, as shown in Equation (51)[

x1 −x∗
2 −x∗

2
x2 x∗

1 x∗
1

]
(51)

For Nt = 3, Nr = L = 2, P = T = 5, we have the SUU
STBC code (45) with codeword matrices⎡

⎣ x1 φy2 φy3 0 x5
0 x2 x3 φy4 0
φy1 0 0 x4 φy5

⎤
⎦ (52)

where X = (x1, x2, x3, x4, x5)
T = R.U and Y = (y1, y2,

y3, y4, y5)
T = R.V, U, V are two 5 × 1 vectors of QAM

symbols and R5 is optimal 5 × 5 complex rotation
according to (48). By setting j = exp(2πi/25), this code
provides the rate of 2-QAM symbols per channel use
and achieves a transmit diversity of 3 regardless of the
delay profile.
In (52), the number of active threads L is less than the

number of transmit antennas Nt. One can re-construct
(52) to get a delto distributed TAST code of smaller
latency by reducing the number of zeros in
transmission.
Thus, for Nt = 3, Nr = L = 2, P = 5 and T = 4, one has

the STBC code with codeword matrix⎡
⎣ x1 φy2 φy3 0
0 x2 φy4 x5
φy1 x3 x4 φy5

⎤
⎦ (53)

In this case, by setting j = exp(2πi/36), Equation (53)
guarantees full diversity irrespective of the delay profile.
This code provides the rate of 2.5-QAM symbols per
channel use.
Although the above examples are independently

derived from the thread construction techniques dis-
cussed in Sections 3 and 4, but they resemble to that of
Damens’ codes designed in [7], and it was also con-
firmed by the simulation results that they have exactly
same performances as that of [7], but we hope that the
simplicity in construction techniques of our codes may
reduce hardware complexity.
In Section 5, we introduced a technique for T = Nt

codeword matrix construction, where the information
symbols are chosen from Z[i] for Nt = 2 with a required
full-diversity rotations of 4 × 4, and ℤ[j] when Nt = 3,
with a required full-diversity rotations of size 9 × 9.
For Nt = Nr = T = 2, we get a delto STBC codeword

matrix of the form

[
x1 φx3
x2 φ4x4

]
(54)

where X = (x1, x2, x3, x4)
T = R.U, U is 4 × 1 vectors of

QAM symbols and R4 is optimal 4 × 4 complex rotation
according to (48). By setting j = exp(2πi/3), this code
provides a rate of 2-QAM symbols per channel use and
achieves a transmit diversity of 2 regardless of the delay
profile among its rows.
The noiseless received signal of (54) can be written as

ZNr×2 = HN×2.
[
x1 φ.x3
x2 φ4.x4

]
2×2

(55)

We remark that x1 = R(1,:)1 × 4.U4 × 1, x2 = R(2,:)1 × 4.
U4 × 1, x3 = R(3,:)1 × 4.U4 × 1 and x4 = R(4,:)1 × 4.U4 × 1

with U4 × 1 = [u1, u2, u3, u4]
T denoting the vector of

transmitted QAM symbols. Hence, we have

ZNr×2 = HN×2.
(
R(1, :)1×4.U4×1 φ.R(3, :)1×4.U4×1

R(2, :)1×4.U4×1 φ4.R(4, :)1×4.U4×1

)
2×2

=

⎛
⎜⎜⎜⎝

H(1, 1) H(1, 2)
H(2, 1) H(2, 2)

...
...

H(N, 1) H(N, 2)

⎞
⎟⎟⎟⎠

Nr×2

.
(
R(1, :)1×4.U4×1 φ.R(3, :)1×4.U4×1

R(2, :)1×4.U4×1 φ4.R(4, :)1×4.U4×1

)
2×2

(56)

This can be equivalently written in columns as

Z(1, 1) = H(1, 1).R(1, :)1×4.U4×1 +H(1, 2).R(2, :)1×4.U4×1

Z(1, 2) = H(1, 1).φ.R(3, :)1×4.U4×1 +H(1, 2).φ4.R(4, :)1×4.U4×1

...

Z(N, 1) = H(Nr , 1).R(1, :)1×4.U4×1 +H(Nr , 2).R(2, :)1×4.U4×1

Z(N, 2) = H(Nr , 1).φ.R(3, :)1×4.U4×1 +H(Nr, 2).φ4.R(4, :)1×4.U4×1

(57)

This can be summarized in matrix form as

Z(1, 1) = (H(1, 1).R(1, :)1×4 +H(1, 2).R(2, :)1×4).U4×1

Z(1, 2) = (H(1, 1).φ.R(3, :)1×4 +H(1, 2).φ4.R(4, :)1×4).U4×1

...

Z(N, 1) = (H(Nr, 1).R(1, :)1×4 +H(Nr , 2).R(2, :)1×4).U4×1

Z(N, 2) = (H(Nr, 1).φ.R(3, :)1×4 +H(Nr , 2).φ4.R(4, :)1×4).U4×1

(58)

⎛
⎜⎜⎜⎜⎜⎝

Z(1, 1)
Z(1, 2)

...
Z(Nr , 1)
Z(Nr , 2)

⎞
⎟⎟⎟⎟⎟⎠

2.Nr×1

=

⎛
⎜⎜⎜⎜⎜⎝

H(1, 1).R(1, :)1×4 +H(1, 2).R(2, :)1×4
H(1, 1).φ.R(3, :)1×4 +H(1, 2).φ4.R(4, :)1×4

...
H(Nr , 1).R(1, :)1×4 +H(Nr , 2).R(2, :)1×4

H(N, 1).φ.R(3, :)1×4 +H(Nr , 2).φ4.R(4, :)1×4

⎞
⎟⎟⎟⎟⎟⎠

2.Nr×4

.U4×1 (59)

So, the transformation of the transmit constellation is
obtained by multiplication with the equivalent matrix:

B =

⎛
⎜⎜⎜⎜⎜⎝

H(1, 1).R(1, :)1×4 +H(1, 2).R(2, :)1×4
H(1, 1).φ.R(3, :)1×4 +H(1, 2).φ4.R(4, :)1×4

...
H(Nr , 1).R(1, :)1×4 +H(Nr , 2).R(2, :)1×4

H(Nr , 1).φ.R(3, :)1×4 +H(Nr, 2).φ4.R(4, :)1×4

⎞
⎟⎟⎟⎟⎟⎠(60)

Note that when the number of equations is less than
the number of unknowns it is necessary to use a
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decision feedback equalizer (DFE) to help the sphere
decoding to converge. For example it is possible to pro-
ceed like as following.
At each time instant the first nm transmitted symbols

in a packet correspond to last nm decoded symbols in
the last packet. The matrix B can be partitioned in the
following way

B =
[
[B1]2Nr×nm , [B2]2Nr×(4−nm)

]
2Nr×4

(61)

and the transmitted symbol vector can be partitioned
as: U = [Cnm×1;D4−nm×1] ; where Cnm×1 is the last nm
decoded symbols in the last packet, thus we have

Z = B1.C + B2.D (62)

and we can run the sphere decoding algorithm with
the following transformation: Z’®Z-B1.C and U®D.
The new system involves the calculation of vector D of
lower size and this can be done with the classical sphere
decoding algorithm.

In the case of one delay symbol period
We suppose that first row is delayed by one symbol per-
iod. In this case, the new space time code can be written
as

Nt =
[
0 x1 φ.x3
x2 φ4.x4 0

]
(63)

The noiseless received signal can then be written

ZNr×3 = HN×2.
[
0 x1 φ.x3
x2 φ4.x4 0

]
2×3

(64)

We remark that x1 = R(1,:)1 × 4.U4 × 1, x2 = R(2,:)1 × 4.
U4 × 1, x3 = R(3,:)1 × 4.U4 × 1 and x4 = R(4,:)1 × 4.U4 × 1.
Hence, we have

ZNr×3 = HNr×2.
[

0 R(1, :)1×4.U4×1 φ.R(3, :)1×4.U4×1

R(2, :)1×4.U4×1 φ4.R(4, :)1×4.U4×1 0

]
2×3

=

⎡
⎢⎢⎢⎣

H(1, 1) H(1, 2)
H(2, 1) H(2, 2)

...
...

H(Nr , 1) H(N, 2)

⎤
⎥⎥⎥⎦

Nr×2

.
[

0 R(1, :)1×4.U4×1 φ.R(3, :)1×4.U4×1

R(2, :)1×4.U4×1 φ4.R(4, :)1×4.U4×1 0

]
2×3

(65)

This can be equivalently written in column

Z(1, 1) = H(1, 2).R(2, :)1×4.U4×1

Z(1, 2) = H(1, 1).R(1, :)1×4.U4×1 +H(1, 2).φ4.R(4, :)1×4.U4×1

Z(1, 3) = H(1, 1).φ.R(3, :)1×4.U4×1

...

Z(N, 1) = H(Nr , 2).R(2, :)1×4.U4×1

Z(N, 2) = H(Nr , 1).R(1, :)1×4.U4×1 +H(N, 2).φ4.R(4, :)1×4.U4×1

Z(N, 3) = H(Nr , 1).φ.R(3, :)1×4.U4×1

(66)

This can be summarized in matrix form as
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z(1, 1)
Z(1, 2)

Z(1, 3)
...

Z(Nr , 1)
Z(Nr , 2)

Z(Nr , 3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.N×1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H(1, 2).R(2, :)1×4
H(1, 1).R(1, :)1×4 +H(1, 2).φ4.R(4, :)1×4

H(1, 1).φ.R(3, :)1×4
...

H(N, 2).R(2, :)1×4
H(N, 1).R(1, :)1×4 +H(N, 2).φ4.R(4, :)1×4

H(N, 1).φ.R(3, :)1×4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.Nr×4

.U4×1 (67)

For Nt = T = 3, and Nr = 2, w get a delto distributed
TAST codeword of the form⎡

⎣ x1 φx4 φ2x7
x2 φ4x5 x8
x3 x6 φ8x9

⎤
⎦ (68)

where X = (x1, x2, ..., x9)
T = R.U, U is a 9 × 1 vector

of information symbols belonging to a 4-array constella-
tion in ℤ[j] and R9 is optimal 9 × 9 complex rotation
according to (48). By setting j = exp(πi/12), this code
provides the rate of 3 symbols per channel use and
achieves a transmit diversity of 3 regardless of the delay
profile.

7. Simulation
Similar to that of TAST codes, we use sphere decoder
for decoding our delto codes. In case of delay profiles
where the received signals may contain some unknown
equations are dealt by the use of minimum mean square
error-decision feedback equalization (MMSE-DFE) pro-
cessing, as explained in previous section and can origin-
ally be found in [21,22].
The simulation figures illustrated below show bit and

symbol error rates (SERs) as function of Eb/No in deci-
bels, which is adjusted as follows.

Eb
N0

∣∣∣∣
dB

=
Es
N0

∣∣∣∣
dB

−10log10R

where Es is the average signal energy per receive
antenna and R is the code rate in bit per channel use
(bpcu).
Figure 3 shows the bit error rate (BER) and SER of the

delto distributed TAST code (50) with and without
delay. We repeat that in case of code (50), the code
parameters are Nt = Nr = L = 2 and P = T = 3. In case
of delay, the first row is shifted by one symbol right to
the second row.
In Figure 4, we simulated the BER and SER perfor-

mances of delto distributed TAST codes (52) with and
without delay. The code parameters of (52) are Nt = 3,
Nr = L = 2, and P = T = 5. For delay profile, the first
row is shifted by one symbol right to the second row.
In Figure 5, we considered the BER and SER perfor-

mances of delto distributed TAST code (53) with and
without delay. The code parameters of (53) are Nt = 3,
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Figure 3 Performance of the delto codeword matrix (50) with and without delay.

Figure 4 Performance of delto codeword matrix (52) with and without delay.
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Nr = L = 2, P = 5 and T = 4. For delay profile, the first
row is shifted by one symbol right to the second row.
Figure 6 shows the BER and SER performances for

codeword matrix (54) without delay. The results are
compared with the result of the well-known golden
code [23] and the code proposed in [11]. The associated
code parameters of (54) are Nt = Nr = T = 2. One can
see that at high SNRs our proposed code (54) gets bet-
ter performances.
Figure 7 shows the BER and SER performances for

codeword matrix (54) with delay. For delay case, we
shifted the first row by one symbol interval as shown in
(63). The results are compared with the result of well-
known golden code [23] and the code given in [11].
Figure 8 shows the BER and SER performances for

codeword matrix (68) without delay. The associated
code parameters (68) are Nt = T = 3, and Nr = 2. The
results are compared with the result of the code given
in [11].
From this figure, one can observe that our proposed

code gets better performance by 0.5 dB at the BER of
10-3. The proposed code gets better performances at
high SNRs.
Figure 9 shows the BER and SER performances for

codeword matrix (68) with delay. The code parameters
for (68) are Nt = T = 3, and Nr = 2. For delay case, we

shifted the first row by one symbol interval. The results
are compared with that of the code given in [11].
Figure 10 shows the BER and SER performances for

codeword matrix (32) with delay. Delay profile is
obtained by shifting the first row in (68) by one symbol
to the right of other rows. The associated code (68)
parameters are Nt = Nr = T = 3. The results are com-
pared with that of the code in [11]. Our proposed delto
distributed TAST code (68) gets better performances
particularly at high SNRs.
Figure 11 shows the BER and SER performances for

codeword matrix (68) without delay. In this case, the
associated code (68) parameters are Nt = Nr = T = 3,
The results are compared with that of the code in [11].
One can see that the error performance of our proposed
delto distributed TAST code (68) is improved by about
2 dB at the BER of 10-5.

8. Conclusion
Within the same framework developed in [7,11], we
introduced some easy and useful techniques for the con-
struction of delay tolerant distributed STBC codes hav-
ing full diversity and full rate. Like their brethren codes,
our proposed codes are flexible with respect to constel-
lation size, number of receive/transmit antennas. We
introduced two useful techniques for constructing

Figure 5 Performance of delto codeword matrix (53) with and without delay.
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Figure 6 Performances of delto codeword matrix (54) without delay (perfect synchronization) with two transmit two receive antennas
and 4-QAM (4 bpcu).

Figure 7 Performances of delto codeword matrix (54) with delay (asynchronous relays) with two transmit two receive antennas and 4-
QAM (8/3 bpcu).
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Figure 8 Performances of delto codeword matrix (68) without delay (perfect synchronization) with three transmit two receive
antennas and 4-QAM (4 bpcu due to DFE equalization).

Figure 9 Performances of delto codeword matrix (68) with delay (asynchronous relays) with three transmit two receive antennas and
4-QAM (3 bpcu due to DFE equalization).
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Figure 10 Performances of delto codeword matrix (68) with delay (asynchronous relays) with three transmit three receive antennas
and 4-QAM (9/2 bpcu).

Figure 11 Performances of delto codeword matrix (68) without delay (perfect synchronization) with three transmit three receive
antennas and 4-QAM (6 bpcu).
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threads codewords matrices. The packing of different
threads into a single codeword matrix provides different
code structures to be used over cooperative networks
with different setup of relays and antennas. In term of
error rates, the codes with T >Nt developed in (50) to
(53) do not outperform the codes introduced by Damen
but we hope that their simple structures may reduce the
hardware complexity. The codes with T = Nt developed
in (54) and (68) outperform the existing codes without
sacrificing decoding complexity and other nice charac-
teristics. For example, the error performance of the code
proposed in (68) is improved by about 2 dB at the BER
of 10-5 when Nt = Nr = 3, and 0.5 dB at 10-3 when Nt =
2 and Nr = 2.

Endnotes
aFor Nt > 4, plus sign is replaced by minus sign. bA safe
prime is a prime number of the form 2p + 1, where p is
also a prime. For example, first seven safe prime num-
bers are [5,7,11,23,47,59,83].
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