67 research outputs found

    Portal vein embolization versus dual vein embolization for management of the future liver remnant in patients undergoing major hepatectomy: meta-analysis

    Get PDF
    BACKGROUND: This meta-analysis aimed to compare progression to surgery, extent of liver hypertrophy, and postoperative outcomes in patients planned for major hepatectomy following either portal vein embolization (PVE) or dual vein embolization (DVE) for management of an inadequate future liver remnant (FLR). METHODS: An electronic search was performed of MEDLINE, Embase, and PubMed databases using both medical subject headings (MeSH) and truncated word searches. Articles comparing PVE with DVE up to January 2022 were included. Articles comparing sequential DVE were excluded. ORs, risk ratios, and mean difference (MD) were calculated using fixed and random-effects models for meta-analysis. RESULTS: Eight retrospective studies including 523 patients were included in the study. Baseline characteristics between the groups, specifically, age, sex, BMI, indication for resection, and baseline FLR (ml and per cent) were comparable. The percentage increase in hypertrophy was larger in the DVE group, 66 per cent in the DVE group versus 27 per cent in the PVE group, MD 39.07 (9.09, 69.05) (P = 0.010). Significantly fewer patients failed to progress to surgery in the DVE group than the PVE group, 13 per cent versus 25 per cent respectively OR 0.53 (0.31, 0.90) (P = 0.020). Rates of post-hepatectomy liver failure 13 per cent versus 22 per cent (P = 0.130) and major complications 20 per cent versus 28 per cent (Clavien–Dindo more than IIIa) (P = 0.280) were lower. Perioperative mortality was lower with DVE, 1 per cent versus 10 per cent (P = 0.010). CONCLUSION: DVE seems to produce a greater degree of hypertrophy of the FLR than PVE alone which translates into more patients progressing to surgery. Higher quality studies are needed to confirm these results

    Outcomes After Liver Transplantation With Incidental Cholangiocarcinoma

    Get PDF
    Cholangiocarcinoma (CCA) is currently a contraindication to liver transplantation (LT) in the United Kingdom (UK). Incidental CCA occurs rarely in some patients undergoing LT. We report on retrospective outcomes of patients with incidental CCA from six UK LT centres. Cases were identified from pathology records. Data regarding tumour characteristics and post-transplant survival were collected. CCA was classified by TNM staging and anatomical location. 95 patients who underwent LT between 1988–2020 were identified. Median follow-up after LT was 2.1 years (14 days-18.6 years). Most patients were male (68.4%), median age at LT was 53 (IQR 46-62), and the majority had underlying PSC (61%). Overall median survival after LT was 4.4 years. Survival differed by tumour site: 1-, 3-, and 5-year estimated survival was 82.1%, 68.7%, and 57.1%, respectively, in intrahepatic CCA (n = 40) and 58.5%, 42.6%, and 30.2% in perihilar CCA (n = 42; p = 0.06). 1-, 3-, and 5-year estimated survival was 95.8%, 86.5%, and 80.6%, respectively, in pT1 tumours (28.2% of cohort), and 65.8%, 44.7%, and 31.1%, respectively, in pT2-4 (p = 0.018). Survival after LT for recipients with incidental CCA is inferior compared to usual outcomes for LT in the United Kingdom. LT for earlier stage CCA has similar survival to LT for hepatocellular cancer, and intrahepatic CCAs have better survival compared to perihilar CCAs. These observations may support LT for CCA in selected cases

    Children's and adolescents' rising animal-source food intakes in 1990-2018 were impacted by age, region, parental education and urbanicity

    Get PDF
    Animal-source foods (ASF) provide nutrition for children and adolescents physical and cognitive development. Here, we use data from the Global Dietary Database and Bayesian hierarchical models to quantify global, regional and national ASF intakes between 1990 and 2018 by age group across 185 countries, representing 93% of the worlds child population. Mean ASF intake was 1.9 servings per day, representing 16% of children consuming at least three daily servings. Intake was similar between boys and girls, but higher among urban children with educated parents. Consumption varied by age from 0.6 at <1 year to 2.5 servings per day at 1519 years. Between 1990 and 2018, mean ASF intake increased by 0.5 servings per week, with increases in all regions except sub-Saharan Africa. In 2018, total ASF consumption was highest in Russia, Brazil, Mexico and Turkey, and lowest in Uganda, India, Kenya and Bangladesh. These findings can inform policy to address malnutrition through targeted ASF consumption programmes. (c) 2023, The Author(s)

    Incident type 2 diabetes attributable to suboptimal diet in 184 countries

    Get PDF
    The global burden of diet-attributable type 2 diabetes (T2D) is not well established. This risk assessment model estimated T2D incidence among adults attributable to direct and body weight-mediated effects of 11 dietary factors in 184 countries in 1990 and 2018. In 2018, suboptimal intake of these dietary factors was estimated to be attributable to 14.1 million (95% uncertainty interval (UI), 13.814.4 million) incident T2D cases, representing 70.3% (68.871.8%) of new cases globally. Largest T2D burdens were attributable to insufficient whole-grain intake (26.1% (25.027.1%)), excess refined rice and wheat intake (24.6% (22.327.2%)) and excess processed meat intake (20.3% (18.323.5%)). Across regions, highest proportional burdens were in central and eastern Europe and central Asia (85.6% (83.487.7%)) and Latin America and the Caribbean (81.8% (80.183.4%)); and lowest proportional burdens were in South Asia (55.4% (52.160.7%)). Proportions of diet-attributable T2D were generally larger in men than in women and were inversely correlated with age. Diet-attributable T2D was generally larger among urban versus rural residents and higher versus lower educated individuals, except in high-income countries, central and eastern Europe and central Asia, where burdens were larger in rural residents and in lower educated individuals. Compared with 1990, global diet-attributable T2D increased by 2.6 absolute percentage points (8.6 million more cases) in 2018, with variation in these trends by world region and dietary factor. These findings inform nutritional priorities and clinical and public health planning to improve dietary quality and reduce T2D globally. (c) 2023, The Author(s)

    The global abundance of tree palms

    Get PDF
    Aim: Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location: Tropical and subtropical moist forests. Time period: Current. Major taxa studied: Palms (Arecaceae). Methods: We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results: On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work. Conclusions: Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests

    Genomic Approaches to Enhance Stress Tolerance for Productivity Improvements in Pearl Millet

    Get PDF
    Pearl millet [Pennisetum glaucum (L.) R. Br.], the sixth most important cereal crop (after rice, wheat, maize, barley, and sorghum), is grown as a grain and stover crop by the small holder farmers in the harshest cropping environments of the arid and semiarid tropical regions of sub-Saharan Africa and South Asia. Millet is grown on ~31 million hectares globally with India in South Asia; Nigeria, Niger, Burkina Faso, and Mali in western and central Africa; and Sudan, Uganda, and Tanzania in Eastern Africa as the major producers. Pearl millet provides food and nutritional security to more than 500 million of the world’s poorest and most nutritionally insecure people. Global pearl millet production has increased over the past 15 years, primarily due to availability of improved genetics and adoption of hybrids in India and expanding area under pearl millet production in West Africa. Pearl millet production is challenged by various biotic and abiotic stresses resulting in a significant reduction in yields. The genomics research in pearl millet lagged behind because of multiple reasons in the past. However, in the recent past, several efforts were initiated in genomic research resulting into a generation of large amounts of genomic resources and information including recently published sequence of the reference genome and re-sequencing of almost 1000 lines representing the global diversity. This chapter reviews the advances made in generating the genetic and genomics resources in pearl millet and their interventions in improving the stress tolerance to improve the productivity of this very important climate-smart nutri-cereal

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees
    corecore