141 research outputs found

    Unexpected Role of α-Fetoprotein in Spermatogenesis

    Get PDF
    BACKGROUND: Heat shock severely affects sperm production (spermatogenesis) and results in a rapid loss of haploid germ cells, or in other words, sperm formation (spermiogenesis) is inhibited. However, the mechanisms behind the effects of heat shock on spermatogenesis are obscure. METHODOLOGY/PRINCIPAL FINDINGS: To identify the inhibitory factor of spermiogenesis, experimental cryptorchid (EC) mice were used in this study. Here we show that α-fetoprotein (AFP) is specifically expressed in the testes of EC mice by proteome analysis. AFP was also specifically localized spermatocytes by immunohistochemical analysis and was secreted into the circulation system of EC mice by immunoblot analysis. Since spermatogenesis of an advanced mammal cannot be reproduced with in vitro, we performed the microinjection of AFP into the seminiferous tubules of normal mice to determine whether AFP inhibits spermiogenesis in vivo. AFP was directly responsible for the block in spermiogenesis of normal mice. To investigate whether AFP inhibits cell differentiation in other models, using EC mice we performed a partial hepatectomy (PH) that triggers a rapid regenerative response in the remnant liver tissue. We also found that liver regeneration is inhibited in EC mice with PH. The result suggests that AFP released into the blood of EC mice regulates liver regeneration by inhibiting the cell division of hepatocytes. CONCLUSIONS/SIGNIFICANCE: AFP is a well-known cancer-specific marker, but AFP has no known function in healthy human beings. Our findings indicate that AFP expressed under EC conditions plays a role as a regulatory factor in spermatogenesis and in hepatic generation

    Prevalence of Abnormalities in Vestibular Function and Balance among HIV-Seropositive and HIV-Seronegative Women and Men

    Get PDF
    BACKGROUND: Most HIV-seropositive subjects in western countries receive highly active antiretroviral therapy (HAART). Although many aspects of their health have been studied, little is known about their vestibular and balance function. The goals of this study were to determine the prevalences of vestibular and balance impairments among HIV-seropositive and comparable seronegative men and women and to determine if those groups differed. METHODS: Standard screening tests of vestibular and balance function, including head thrusts, Dix-Hallpike maneuvers, and Romberg balance tests on compliant foam were performed during semiannual study visits of participants who were enrolled in the Baltimore and Washington, D. C. sites of the Multicenter AIDS Cohort Study and the Women's Interagency HIV Study. RESULTS: No significant differences by HIV status were found on most tests, but HIV-seropositive subjects who were using HAART had a lower frequency of abnormal Dix-Hallpike nystagmus than HIV-seronegative subjects. A significant number of nonclassical Dix-Hallpike responses were found. Age was associated with Romberg scores on foam with eyes closed. Sex was not associated with any of the test scores. CONCLUSION: These findings suggest that HAART-treated HIV infection has no harmful association with vestibular function in community-dwelling, ambulatory men and women. The association with age was expected, but the lack of association with sex was unexpected. The presence of nonclassical Dix-Hallpike responses might be consistent with central nervous system lesions

    Simulating Microdosimetry in a Virtual Hepatic Lobule

    Get PDF
    The liver plays a key role in removing harmful chemicals from the body and is therefore often the first tissue to suffer potentially adverse consequences. To protect public health it is necessary to quantitatively estimate the risk of long-term low dose exposure to environmental pollutants. Animal testing is the primary tool for extrapolating human risk but it is fraught with uncertainty, necessitating novel alternative approaches. Our goal is to integrate in vitro liver experiments with agent-based cellular models to simulate a spatially extended hepatic lobule. Here we describe a graphical model of the sinusoidal network that efficiently simulates portal to centrilobular mass transfer in the hepatic lobule. We analyzed the effects of vascular topology and metabolism on the cell-level distribution following oral exposure to chemicals. The spatial distribution of metabolically inactive chemicals was similar across different vascular networks and a baseline well-mixed compartment. When chemicals were rapidly metabolized, concentration heterogeneity of the parent compound increased across the vascular network. As a result, our spatially extended lobule generated greater variability in dose-dependent cellular responses, in this case apoptosis, than were observed in the classical well-mixed liver or in a parallel tubes model. The mass-balanced graphical approach to modeling the hepatic lobule is computationally efficient for simulating long-term exposure, modular for incorporating complex cellular interactions, and flexible for dealing with evolving tissues

    Deregulated expression of TANK in glioblastomas triggers pro-tumorigenic ERK1/2 and AKT signaling pathways

    Get PDF
    Signal transmission by the noncanonical IkappaB kinases (IKKs), TANK-binding kinase 1 (TBK1) and IKKɛ, requires interaction with adapter proteins such as TRAF associated NF-κB activator (TANK). Although increased expression or dysregulation of both kinases has been described for a variety of human cancers, this study shows that deregulated expression of the TANK protein is frequently occurring in glioblastomas (GBMs). The functional relevance of TANK was analyzed in a panel of GBM-derived cell lines and revealed that knockdown of TANK arrests cells in the S-phase and prohibits tumor cell migration. Deregulated TANK expression affects several signaling pathways controlling cell proliferation and the inflammatory response. Interference with stoichiometrically assembled signaling complexes by overexpression or silencing of TANK prevented constitutive interferon-regulatory factor 3 (IRF3) phosphorylation. Knockdown of TANK frequently prevents constitutive activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). TANK-mediated ERK1/2 activation is independent from the canonical MAP kinase or ERK kinase (MEK) 1/2-mediated pathway and utilizes an alternative pathway that uses a TBK1/IKKɛ/Akt signaling axis, thus identifying a novel pathway suitable to block constitutive ERK1/2 activity.Peer reviewe

    Stress corrosion cracking: Characteristics, Mechanisms and Experimental study

    Get PDF
    Stress corrosion cracking (SCC) is a phenomenon in which the cracking of a metal alloy usually results from the combined action of a corrodent and tensile stress. Stresses that cause cracking can be residual or may be applied during service. A degree of mechanistic understanding of SCC will enable most metallic engineering materials to operate safely though stress corrosion cracking failures still continue to occur unexpectedly in industry. In this paper, the characteristics, mechanisms and methods of SCC prevention are reviewed. The results of experimental studies on alpha brass are also reported of which the failure mode conformed with the film-rupture and anodic dissolution mechanism

    Alveolar hypoxia, alveolar macrophages, and systemic inflammation

    Get PDF
    Diseases featuring abnormally low alveolar PO2 are frequently accompanied by systemic effects. The common presence of an underlying inflammatory component suggests that inflammation may contribute to the pathogenesis of the systemic effects of alveolar hypoxia. While the role of alveolar macrophages in the immune and defense functions of the lung has been long known, recent evidence indicates that activation of alveolar macrophages causes inflammatory disturbances in the systemic microcirculation. The purpose of this review is to describe observations in experimental animals showing that alveolar macrophages initiate a systemic inflammatory response to alveolar hypoxia. Evidence obtained in intact animals and in primary cell cultures indicate that alveolar macrophages activated by hypoxia release a mediator(s) into the circulation. This mediator activates perivascular mast cells and initiates a widespread systemic inflammation. The inflammatory cascade includes activation of the local renin-angiotensin system and results in increased leukocyte-endothelial interactions in post-capillary venules, increased microvascular levels of reactive O2 species; and extravasation of albumin. Given the known extrapulmonary responses elicited by activation of alveolar macrophages, this novel phenomenon could contribute to some of the systemic effects of conditions featuring low alveolar PO2

    Mice Lacking Alkbh1 Display Sex-Ratio Distortion and Unilateral Eye Defects

    Get PDF
    Escherichia coli AlkB is a 2-oxoglutarate- and iron-dependent dioxygenase that reverses alkylated DNA damage by oxidative demethylation. Mouse AlkB homolog 1 (Alkbh1) is one of eight members of the newly discovered family of mammalian dioxygenases.In the present study we show non-Mendelian inheritance of the Alkbh1 targeted allele in mice. Both Alkbh1(-/-) and heterozygous Alkbh1(+/-) offspring are born at a greatly reduced frequency. Additionally, the sex-ratio is considerably skewed against female offspring, with one female born for every three to four males. Most mechanisms that cause segregation distortion, act in the male gametes and affect male fertility. The skewing of the sexes appears to be of paternal origin, and might be set in the pachythene stage of meiosis during spermatogenesis, in which Alkbh1 is upregulated more than 10-fold. In testes, apoptotic spermatids were revealed in 5-10% of the tubules in Alkbh1(-/-) adults. The deficiency of Alkbh1 also causes misexpression of Bmp2, 4 and 7 at E11.5 during embryonic development. This is consistent with the incompletely penetrant phenotypes observed, particularly recurrent unilateral eye defects and craniofacial malformations.Genetic and phenotypic assessment suggests that Alkbh1 mediates gene regulation in spermatogenesis, and that Alkbh1 is essential for normal sex-ratio distribution and embryonic development in mice

    A novel, integrated in vitro carcinogenicity test to identify genotoxic and non-genotoxic carcinogens using human lymphoblastoid cells

    Get PDF
    Human exposure to carcinogens occurs via a plethora of environmental sources, with 70–90% of cancers caused by extrinsic factors. Aberrant phenotypes induced by such carcinogenic agents may provide universal biomarkers for cancer causation. Both current in vitro genotoxicity tests and the animal-testing paradigm in human cancer risk assessment fail to accurately represent and predict whether a chemical causes human carcinogenesis. The study aimed to establish whether the integrated analysis of multiple cellular endpoints related to the Hallmarks of Cancer could advance in vitro carcinogenicity assessment. Human lymphoblastoid cells (TK6, MCL-5) were treated for either 4 or 23 h with 8 known in vivo carcinogens, with doses up to 50% Relative Population Doubling (maximum 66.6 mM). The adverse effects of carcinogens on wide-ranging aspects of cellular health were quantified using several approaches; these included chromosome damage, cell signalling, cell morphology, cell-cycle dynamics and bioenergetic perturbations. Cell morphology and gene expression alterations proved particularly sensitive for environmental carcinogen identification. Composite scores for the carcinogens’ adverse effects revealed that this approach could identify both DNA-reactive and non-DNA reactive carcinogens in vitro. The richer datasets generated proved that the holistic evaluation of integrated phenotypic alterations is valuable for effective in vitro risk assessment, while also supporting animal test replacement. Crucially, the study offers valuable insights into the mechanisms of human carcinogenesis resulting from exposure to chemicals that humans are likely to encounter in their environment. Such an understanding of cancer induction via environmental agents is essential for cancer prevention

    Persistent and polarised global actin flow is essential for directionality during cell migration

    Get PDF
    Cell migration is hypothesized to involve a cycle of behaviours beginning with leading edge extension. However, recent evidence suggests that the leading edge may be dispensable for migration, raising the question of what actually controls cell directionality. Here, we exploit the embryonic migration of Drosophila macrophages to bridge the different temporal scales of the behaviours controlling motility. This approach reveals that edge fluctuations during random motility are not persistent and are weakly correlated with motion. In contrast, flow of the actin network behind the leading edge is highly persistent. Quantification of actin flow structure during migration reveals a stable organization and asymmetry in the cell-wide flowfield that strongly correlates with cell directionality. This organization is regulated by a gradient of actin network compression and destruction, which is controlled by myosin contraction and cofilin-mediated disassembly. It is this stable actin-flow polarity, which integrates rapid fluctuations of the leading edge, that controls inherent cellular persistence
    • …
    corecore