1,594 research outputs found
Dynamin-related protein 1 at the crossroads of cancer
Mitochondrial dynamics are known to have an important role in so-called age-related diseases, including cancer. Mitochondria is an organelle involved in many key cellular functions and responds to physiologic or stress stimuli by adapting its structure and function. Perhaps the most important structural changes involve mitochondrial dynamics (fission and fusion), which occur in normal cells as well as in cells under dysregulation, such as cancer cells. Dynamin-related protein 1 (DRP1), a member of the dynamin family of guanosine triphosphatases (GTPases), is the key component of mitochondrial fission machinery. Dynamin-related protein 1 is associated with different cell processes such as apoptosis, mitochondrial biogenesis, mitophagy, metabolism, and cell proliferation, differentiation, and transformation. The role of DRP1 in tumorigenesis may seem to be paradoxical, since mitochondrial fission is a key mediator of two very different processes, cellular apoptosis and cell mitosis. Dynamin-related protein 1 has been associated with the development of distinct human cancers, including changes in mitochondrial energetics and cellular metabolism, cell proliferation, and stem cell maintenance, invasion, and promotion of metastases. However, the underlying mechanism for this association is still being explored. Herein, we review the published knowledge on the role of DRP1 in cancer, exploring its interaction with different biological processes in the tumorigenesis context.Acknowledgments: The authors would like to acknowledge all the members of the Cancer Signalling and Metabolism research group at IPATIMUP/i3S for their input on different topics of the manuscript. This work was supported by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia—in the framework of project UID/BIM/04293/2013. It was also financed by FEDER—Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020—Operational Program for Competitiveness and Internationalization (POCI), Portugal 2020, and by Portuguese funds through FCT—Fundação para a Ciência e Tecnologia/Ministério da Ciência, Tecnologia e Inovação in the framework of the projects “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274). Further funding was obtained from the project “Advancing cancer research: from basic knowledgment to application” NORTE-01-0145-FEDER-000029: “Projetos Estruturados de I & D & I”, funded by Norte 2020—Programa Operacional Regional do Norte
Prostate cancer proliferation is affected by the subcellular localization of MCT2 and accompanied by significant peroxisomal alterations
Reprogramming of lipid metabolism directly contributes to malignant transformation and progression. The increased uptake of circulating lipids, the transfer of fatty acids from stromal adipocytes to cancer cells, the de novo fatty acid synthesis, and the fatty acid oxidation support the central role of lipids in many cancers, including prostate cancer (PCa). Fatty acid ß-oxidation is the dominant bioenergetic pathway in PCa and recent evidence suggests that PCa takes advantage of the peroxisome transport machinery to target monocarboxylate transporter 2 (MCT2) to peroxisomes in order to increase ß-oxidation rates and maintain the redox balance. Here we show evidence suggesting that PCa streamlines peroxisome metabolism by upregulating distinct pathways involved in lipid metabolism. Moreover, we show that MCT2 is required for PCa cell proliferation and, importantly, that its specific localization at the peroxisomal membranes is essential for this role. Our results highlight the importance of peroxisomes in PCa development and uncover different cellular mechanisms that may be further explored as possible targets for PCa therapy.This work was supported by the Portuguese Foundation for Science and Technology (FCT): PTDC/IMI-MIC/0828/2012, PTDC/BIA-CEL/31378/2017, CEECIND/03747/2017, SFRH/BPD/77619/2011, SFRH/BD/101942/2014, UIDB/04501/2020, under the scope of the Operational Program “Competitiveness and internationalization”, in its FEDER/FNR component. It was also funded by the Comissão da Região Centro CCDRC and FEDER through the integrated project pAGE-CENTRO-01-0145-FEDER-000003. This work was also supported by national funds (OE), through FCT, I.P., in the scope of the framework contract foreseen in the numbers 4, 5, and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19
Antifouling Marine Coatings with a Potentially Safer and Sustainable Synthetic Polyphenolic Derivative
The development of harmless substances to replace biocide-based coatings used to prevent or manage marine biofouling and its unwanted consequences is urgent. The formation of biofilms on submerged marine surfaces is one of the first steps in the marine biofouling process, which facilitates the further settlement of macrofoulers. Anti-biofilm properties of a synthetic polyphenolic compound, with previously described anti-settlement activity against macrofoulers, were explored in this work. In solution this new compound was able to prevent biofilm formation and reduce a pre-formed biofilm produced by the marine bacterium, Pseudoalteromonas tunicata. Then, this compound was applied to a marine coating and the formation of P. tunicata biofilms was assessed under hydrodynamic conditions to mimic the marine environment. For this purpose, polyurethane (PU)-based coating formulations containing 1 and 2 wt.% of the compound were prepared based on a prior developed methodology. The most effective formulation in reducing the biofilm cell number, biovolume, and thickness was the PU-based coating containing an aziridine-based crosslinker and 2 wt.% of the compound. To assess the marine ecotoxicity impact of this compound, its potential to disrupt endocrine processes was evaluated through the modulation of two nuclear receptors (NRs), peroxisome proliferator-activated receptor gamma (PPAR gamma), and pregnane X receptor (PXR). Transcriptional activation of the selected NRs upon exposure to the polyphenolic compound (10 mu M) was not observed, thus highlighting the eco-friendliness towards the addressed NRs of this new dual-acting anti-macro- and anti-microfouling agent towards the addressed NRs
Low-Cost Wearable Data Acquisition for Stroke Rehabilitation: A Proof-of-Concept Study on Accelerometry for Functional Task Assessment
Background: An increasingly aging society and consequently rising number of patients with poststroke-related neurological dysfunctions are forcing the rehabilitation field to adapt to ever-growing demands. Although clinical reasoning within rehabilitation is dependent on patient movement performance analysis, current strategies for monitoring rehabilitation progress are based on subjective time-consuming assessment scales, not often applied. Therefore, a need exists for efficient nonsubjective monitoring methods. Wearable monitoring devices are rapidly becoming a recognized option in rehabilitation for quantitative measures. Developments in sensors, embedded technology, and smart textile are driving rehabilitation to adopt an objective, seamless, efficient, and cost-effective delivery system. This study aims to assist physiotherapists’ clinical reasoning process through the incorporation of accelerometers as part of an electronic data acquisition system. Methods: A simple, low-cost, wearable device for poststroke rehabilitation progress monitoring was developed based on commercially available inertial sensors. Accelerometry data acquisition was performed for 4 first-time poststroke patients during a reach-press-return task. Results: Preliminary studies revealed acceleration profiles of stroke patients through which it is possible to quantitatively assess the functional movement, identify compensatory strategies, and help define proper movement. Conclusion: An inertial data acquisition system was designed and developed as a low-cost option for monitoring rehabilitation. The device seeks to ease the data-gathering process by physiotherapists to complement current practices with accelerometry profiles and aid the development of quantifiable methodologies and protocols.info:eu-repo/semantics/publishedVersio
Methodological considerations for kinematic analysis of upper limbs in healthy and poststroke adults Part II: a systematic review of motion capture systems and kinematic metrics
To review the methods used to analyze the kinematics of upper limbs (ULs) of healthy and poststroke adults, namely the motion capture systems and kinematic metrics. A database of articles published in the last decade was compiled using the following search terms combinations: (“upper extremity” OR “upper limb” OR arm) AND (kinematic OR motion OR movement) AND (analysis OR assessment OR measurement). The articles included in this review: (1) had the purpose to analyze objectively three-dimension kinematics of ULs, (2) studied functional movements or activities of daily living involving ULs, and (3) studied healthy and/or poststroke adults. Fourteen articles were included (four studied a healthy sample, three analyzed poststroke patients, and seven examined both poststroke and healthy participants). Most articles used optoelectronic systems with markers; however, the presentation of laboratory and task-specific errors is missing. Markerless systems, used in some studies, seem to be promising alternatives for implementation of kinematic analysis in hospitals and clinics, but the literature proving their validity is scarce. Most articles analyzed “joint kinematics” and “end-point kinematics,” mainly related with reaching. The different stroke locations of the samples were not considered in their analysis and only three articles described their psychometric properties. Future research should validate portable motion capture systems, document their specific error at the acquisition place and for the studied task, include grasping and manipulation analysis, and describe psychometric properties.info:eu-repo/semantics/publishedVersio
Cardiovascular Effects and Molecular Mechanisms of Bisphenol A and Its Metabolite MBP in Zebrafish
This is the author accepted manuscript. The final version is available on open access from American Chemical Society via the DOI in this record The plastic monomer bisphenol A (BPA) is one of the highest production volume chemicals in the world and is frequently detected in wildlife and humans, particularly children. BPA has been associated with numerous adverse health outcomes relating to its estrogenic and other hormonal properties, but direct causal links are unclear in humans and animal models. Here we simulated measured (1×) and predicted worst-case (10×) maximum foetal exposures for BPA, or equivalent concentrations of its metabolite MBP, using fluorescent reporter embryo-larval zebrafish capable of quantifying Estrogen Response Element (ERE) activation throughout the body. Heart valves were primary sites for ERE activation by BPA and MBP, and transcriptomic analysis of micro-dissected heart tissues showed that both chemicals perturbed similar downstream molecular pathways and biological processes, including down-regulation of cartilage morphogenesis and filamentous protein synthesis. Collagen/keratin deficiency and impact on heart valve structural integrity were confirmed by histopathology for high-level MBP exposure, and structural defects (abnormal curvature) of the atrio-ventricular valves corresponded with impaired cardiovascular function (reduced ventricular beat rate and blood flow). Our results are the first to demonstrate plausible mechanistic links between ERE activation in the heart valves by BPA’s reactive metabolite MBP and the development of valvular- cardiovascular disease states.Biotechnology & Biological Sciences Research Council (BBSRC)Natural Environment Research Council (NERC
The Incremental Cooperative Design of Preventive Healthcare Networks
This document is the Accepted Manuscript version of the following article: Soheil Davari, 'The incremental cooperative design of preventive healthcare networks', Annals of Operations Research, first published online 27 June 2017. Under embargo. Embargo end date: 27 June 2018. The final publication is available at Springer via http://dx.doi.org/10.1007/s10479-017-2569-1.In the Preventive Healthcare Network Design Problem (PHNDP), one seeks to locate facilities in a way that the uptake of services is maximised given certain constraints such as congestion considerations. We introduce the incremental and cooperative version of the problem, IC-PHNDP for short, in which facilities are added incrementally to the network (one at a time), contributing to the service levels. We first develop a general non-linear model of this problem and then present a method to make it linear. As the problem is of a combinatorial nature, an efficient Variable Neighbourhood Search (VNS) algorithm is proposed to solve it. In order to gain insight into the problem, the computational studies were performed with randomly generated instances of different settings. Results clearly show that VNS performs well in solving IC-PHNDP with errors not more than 1.54%.Peer reviewe
Lower NPAS3 expression during the later stages of abnormal lung development in rat congenital diaphragmatic hernia
Purpose
Congenital diaphragmatic hernia (CDH) is characterized by a developmental defect in the diaphragm, pulmonary hypoplasia and pulmonary hypertension. NPAS3 is a PAS domain transcription factor regulating Drosophila tracheogenesis. NPAS3 null mice develop pulmonary hypoplasia in utero and die after birth due to respiratory failure. We aimed to evaluate NPAS3 expres- sion during normal and abnormal lung development due to CDH.
Methods
CDH was induced by administering 100 mg/ml nitrofen to time-pregnant dams on embryonic day (E) 9 of gestation. Lungs were isolated on E15, E18 and E21 and NPAS3 localization was determined by immunohisto- chemistry and quantified using Western blotting.
Results
We found that only E21 hypoplastic CDH lungs have reduced expression of NPAS3 in the terminal sac- cules. Western blotting confirmed the down-regulation of NPAS3 protein in the nitrofen-induced hypoplastic lungs.
Conclusions
We demonstrate for the first time that ni- trofen-induced hypoplastic CDH lungs have reduced NPAS3 expression in the terminal saccules during the later stages of abnormal lung development. Our findings suggest that NPAS3 is associated with pulmonary hypoplasia in CDH.Supported by the Children’s Hospital Research Institute of Manitoba; RK is the recipient of a Career Enhancement Award from the Canadian Child Health Clinician Scientist Program and a New Investigator Salary Award from the Canadian Institutes of Health Research, Manitoba Lung Association and the Children’s Hospital Research Institute
- …