9 research outputs found

    A Proposal for a New Determination of the Gas Constant

    No full text

    Phenotypic effect of GBA1 variants in individuals with and without Parkinson's disease: The RAPSODI study

    Get PDF
    BACKGROUND: Variants in the GBA1 gene cause the lysosomal storage disorder Gaucher disease (GD). They are also risk factors for Parkinson's disease (PD), and modify the expression of the PD phenotype. The penetrance of GBA1 variants in PD is incomplete, and the ability to determine who among GBA1 variant carriers are at higher risk of developing PD, would represent an advantage for prognostic and trial design purposes. OBJECTIVES: To compare the motor and non-motor phenotype of GBA1 carriers and non-carriers. METHODS: We present the cross-sectional results of the baseline assessment from the RAPSODI study, an online assessment tool for PD patients and GBA1 variant carriers. The assessment includes clinically validated questionnaires, a tap-test, the University of Pennsyllvania Smell Identification Test and cognitive tests. Additional, homogeneous data from the PREDICT-PD cohort were included. RESULTS: A total of 379 participants completed all parts of the RAPSODI assessment (89 GBA1-negative controls, 169 GBA1-negative PD, 47 GBA1-positive PD, 47 non-affected GBA1 carriers, 27 GD). Eighty-six participants were recruited through PREDICT-PD (43 non-affected GBA1 carriers and 43 GBA1-negative controls). GBA1-positive PD patients showed worse performance in visual cognitive tasks and olfaction compared to GBA1-negative PD patients. No differences were detected between non-affected GBA1 carriers carriers and GBA1-negative controls. No phenotypic differences were observed between any of the non-PD groups. CONCLUSIONS: Our results support previous evidence that GBA1-positive PD has a specific phenotype with more severe non-motor symptoms. However, we did not reproduce previous findings of more frequent prodromal PD signs in non-affected GBA1 carriers

    Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine

    No full text

    Guidelines for the welfare and use of animals in cancer research

    Get PDF
    Animal experiments remain essential to understand the fundamental mechanisms underpinning malignancy and to discover improved methods to prevent, diagnose and treat cancer. Excellent standards of animal care are fully consistent with the conduct of high quality cancer research. Here we provide updated guidelines on the welfare and use of animals in cancer research. All experiments should incorporate the 3Rs: replacement, reduction and refinement. Focusing on animal welfare, we present recommendations on all aspects of cancer research, including: study design, statistics and pilot studies; choice of tumour models (e.g., genetically engineered, orthotopic and metastatic); therapy (including drugs and radiation); imaging (covering techniques, anaesthesia and restraint); humane endpoints (including tumour burden and site); and publication of best practice.<br/

    Predicting personality from network-based resting-state functional connectivity

    No full text
    corecore