729 research outputs found

    Effect of 2-(3-carboxy-1-oxopropyl) amino-2-deoxy-D-glucose on human esophageal cancer cell line

    Get PDF
    Aim: To determine whether 2-(3-carboxy-1-oxopropy1) amino-2-deoxy-D-glucose (COPADG), a derivative of D-amino-glucose, inhibited the growth of human esophageal cancer cell line Eca-109. Methods: Effects of COPADG on Eca-109 cells cultured in RPMI 1640 medium were examined by a tetrazolium-based colorimetric assay (MTT assay). Results: COPADG inhibited the growth of Eca-109 cells in a dose- and time-dependent manner; the maximum inhibition rate was 83.75%. Conclusion: COPADG can directly inhibit the proliferation of Eca-109 cells, which may serve as the experimental evidence for development of new drugs for esophageal cancer therapy. Copyright © 2004 by The WJG.published_or_final_versio

    Microfluidic droplet grating for reconfigurable optical diffraction

    Get PDF
    Author name used in this publication: X. M. Zhang2009-2010 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Types of Septic Cardiomyopathy: Prognosis and Influencing Factors - A Clinical Study

    Get PDF
    Nian-Fang Lu,1 Hong-Xia Niu,2 An-Qi Liu,1 Ya-Lei Chen,1 Hu-Nan Liu,1 Pei-Hong Zhao,1 Jun Shao,3 Xiu-Ming Xi4 1Department of Critical Care Medicine, Capital Medical University Electric Teaching Hospital/Beijing Electric Power Hospital, Beijing, People’s Republic of China; 2Department of Emergency, Capital Medical University Electric Teaching Hospital/Beijing Electric Power Hospital, Beijing, People’s Republic of China; 3Department of Critical Care Medicine, Subei People’s Hospital of Jiangsu Province, Yangzhou, People’s Republic of China; 4Department of Critical Care Medicine, Capital Medical University Fuxing Hospital, Beijing, People’s Republic of ChinaCorrespondence: Xiu-Ming Xi, Department of Critical Care Medicine, Capital Medical University Fuxing Hospital, No. 20 Fuxingmenwai Street, Xicheng District, Beijing, 100038, People’s Republic of China, Tel +86 13801244610, Email [email protected] Jun Shao, Department of Critical Care Medicine, Subei People’s Hospital of Jiangsu Province, No. 98 Nantong West Road, Guangling District, Jiangsu, Yangzhou, People’s Republic of China, Tel +86 18051061365, Email [email protected]: To explore the prognostic outcomes associated with different types of septic cardiomyopathy and analyze the factors that exert an influence on these outcomes.Methods: The data collected within 24 hours of ICU admission included cardiac troponin I (cTnI), N-terminal pro-Brain Natriuretic Peptide (NT-proBNP); SOFA (sequential organ failure assessment) scores, and the proportion of vasopressor use. Based on echocardiographic outcomes, septic cardiomyopathy was categorized into left ventricular (LV) systolic dysfunction, LV diastolic dysfunction, and right ventricular (RV) systolic dysfunction. Differences between the mortality and survival groups, as well as between each cardiomyopathy subgroup and the non-cardiomyopathy group were compared, to explore the influencing factors of cardiomyopathy.Results: A cohort of 184 patients were included in this study, with LV diastolic dysfunction having the highest incidence rate (43.5%). The mortality group had significantly higher SOFA scores, vasopressor use, and cTnI levels compared to the survival group; the survival group had better LV diastolic function than the mortality group (p 0.05).Conclusion: Patients with advanced age, hypertension, diabetes mellitus, or coronary artery disease are more prone to develop LV diastolic dysfunction type of cardiomyopathy; cardiomyopathy subgroups had higher levels of cTnI. The RV systolic dysfunction cardiomyopathy subgroup had higher SOFA scores and NT-proBNP levels. The occurrence of RV systolic dysfunction in patients with sepsis significantly increased the mortality rate.Keywords: cardiac function, echocardiography, influencing factors, prognosis, sepsis, septic cardiomyopath

    Noiseless nonreciprocity in a parametric active device

    Full text link
    Nonreciprocal devices such as circulators and isolators belong to an important class of microwave components employed in applications like the measurement of mesoscopic circuits at cryogenic temperatures. The measurement protocols usually involve an amplification chain which relies on circulators to separate input and output channels and to suppress backaction from different stages on the sample under test. In these devices the usual reciprocal symmetry of circuits is broken by the phenomenon of Faraday rotation based on magnetic materials and fields. However, magnets are averse to on-chip integration, and magnetic fields are deleterious to delicate superconducting devices. Here we present a new proposal combining two stages of parametric modulation emulating the action of a circulator. It is devoid of magnetic components and suitable for on-chip integration. As the design is free of any dissipative elements and based on reversible operation, the device operates noiselessly, giving it an important advantage over other nonreciprocal active devices for quantum information processing applications.Comment: 17 pages, 4 figures + 12 pages Supplementary Informatio

    Pure angular momentum generator using a ring resonator

    Get PDF
    Author name used in this publication: X. M. ZhangAuthor name used in this publication: D. P. Tsai2010-2011 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation

    Get PDF
    Author name used in this publication: Zhang X. M.2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Resource-efficient high-dimensional subspace teleportation with a quantum autoencoder.

    Get PDF
    Quantum autoencoders serve as efficient means for quantum data compression. Here, we propose and demonstrate their use to reduce resource costs for quantum teleportation of subspaces in high-dimensional systems. We use a quantum autoencoder in a compress-teleport-decompress manner and report the first demonstration with qutrits using an integrated photonic platform for future scalability. The key strategy is to compress the dimensionality of input states by erasing redundant information and recover the initial states after chip-to-chip teleportation. Unsupervised machine learning is applied to train the on-chip autoencoder, enabling the compression and teleportation of any state from a high-dimensional subspace. Unknown states are decompressed at a high fidelity (~0.971), obtaining a total teleportation fidelity of ~0.894. Subspace encodings hold great potential as they support enhanced noise robustness and increased coherence. Laying the groundwork for machine learning techniques in quantum systems, our scheme opens previously unidentified paths toward high-dimensional quantum computing and networking

    Preferential Paths of Air-water Two-phase Flow in Porous Structures with Special Consideration of Channel Thickness Effects.

    Get PDF
    Accurate understanding and predicting the flow paths of immiscible two-phase flow in rocky porous structures are of critical importance for the evaluation of oil or gas recovery and prediction of rock slides caused by gas-liquid flow. A 2D phase field model was established for compressible air-water two-phase flow in heterogenous porous structures. The dynamic characteristics of air-water two-phase interface and preferential paths in porous structures were simulated. The factors affecting the path selection of two-phase flow in porous structures were analyzed. Transparent physical models of complex porous structures were prepared using 3D printing technology. Tracer dye was used to visually observe the flow characteristics and path selection in air-water two-phase displacement experiments. The experimental observations agree with the numerical results used to validate the accuracy of phase field model. The effects of channel thickness on the air-water two-phase flow behavior and paths in porous structures were also analyzed. The results indicate that thick channels can induce secondary air flow paths due to the increase in flow resistance; consequently, the flow distribution is different from that in narrow channels. This study provides a new reference for quantitatively analyzing multi-phase flow and predicting the preferential paths of immiscible fluids in porous structures
    corecore