341 research outputs found

    Dynamic fluid configurations in steady-state two-phase flow in Bentheimer sandstone

    Get PDF
    Fast synchrotron tomography is used to study the impact of capillary number, Ca, on fluid configurations in steady-state two-phase flow in porous media. Brine and n-decane were co-injected at fixed fractional flow, fw=0.5, in a cylindrical Bentheimer sandstone sample for a range of capillary numbers 2.1Γ—10βˆ’7≀Ca≀4.2Γ—10βˆ’5, while monitoring the pressure differential. As we have demonstrated in Gao et al. [Phys. Rev. Fluids 5, 013801 (2020)], dependent on Ca, different flow regimes have been identified: at low Ca only fixed flow pathways exist, while after a certain threshold dynamic effects are observed resulting in intermittent fluctuations in fluid distribution which alter fluid connectivity. Additionally, the flow paths, for each capillary number, were imaged multiple times to quantify the less frequent changes in fluid occupancy, happening over timescales longer than the duration of our scans (40 s). In this paper we demonstrate how dynamic connectivity results from the interaction between oil ganglia populations. At low Ca connected pathways of ganglia are fixed with time-independent small, medium, and large ganglia populations. However, with an increase in Ca we see fluctuations in the size and numbers of the larger ganglia. With the onset of intermittency, fluctuations occur mainly in pores and throats of intermediate size. When Ca is further increased, we see rapid changes in occupancy in pores of all size. By combining observations on pressure fluctuations and flow regimes at various capillary numbers, we summarize a phase diagram over a range of capillary numbers for the wetting and nonwetting phases, Caw and Canw, respectively, to quantify the degree of intermittent flow. These different regimes are controlled by a competition between viscous forces on the flowing fluids and the capillary forces acting in the complex pore space. Furthermore, we plot the phase diagrams of the transition from Darcy flow to intermittent flow over a range of Reynolds and Weber numbers for the wetting and nonwetting phases to evaluate the balance among capillary, viscous, and inertial forces, incorporating data from the literature. We demonstrate that pore geometry has a significant control on flow regime

    Pore-scale imaging and analysis of low salinity waterflooding in a heterogeneous carbonate rock at reservoir conditions

    Get PDF
    X-ray micro-tomography combined with a high-pressure high-temperature flow apparatus and advanced image analysis techniques were used to image and study fluid distribution, wetting states and oil recovery during low salinity waterflooding (LSW) in a complex carbonate rock at subsurface conditions. The sample, aged with crude oil, was flooded with low salinity brine with a series of increasing flow rates, eventually recovering 85% of the oil initially in place in the resolved porosity. The pore and throat occupancy analysis revealed a change in fluid distribution in the pore space for different injection rates. Low salinity brine initially invaded large pores, consistent with displacement in an oil-wet rock. However, as more brine was injected, a redistribution of fluids was observed; smaller pores and throats were invaded by brine and the displaced oil moved into larger pore elements. Furthermore, in situ contact angles and curvatures of oil–brine interfaces were measured to characterize wettability changes within the pore space and calculate capillary pressure. Contact angles, mean curvatures and capillary pressures all showed a shift from weakly oil-wet towards a mixed-wet state as more pore volumes of low salinity brine were injected into the sample. Overall, this study establishes a methodology to characterize and quantify wettability changes at the pore scale which appears to be the dominant mechanism for oil recovery by LSW

    Resource-efficient high-dimensional subspace teleportation with a quantum autoencoder.

    Get PDF
    Quantum autoencoders serve as efficient means for quantum data compression. Here, we propose and demonstrate their use to reduce resource costs for quantum teleportation of subspaces in high-dimensional systems. We use a quantum autoencoder in a compress-teleport-decompress manner and report the first demonstration with qutrits using an integrated photonic platform for future scalability. The key strategy is to compress the dimensionality of input states by erasing redundant information and recover the initial states after chip-to-chip teleportation. Unsupervised machine learning is applied to train the on-chip autoencoder, enabling the compression and teleportation of any state from a high-dimensional subspace. Unknown states are decompressed at a high fidelity (~0.971), obtaining a total teleportation fidelity of ~0.894. Subspace encodings hold great potential as they support enhanced noise robustness and increased coherence. Laying the groundwork for machine learning techniques in quantum systems, our scheme opens previously unidentified paths toward high-dimensional quantum computing and networking

    Vomiting and wasting disease associated with hemagglutinating encephalomyelitis viruses infection in piglets in jilin, china

    Get PDF
    One coronavirus strain was isolated from brain tissues of ten piglets with evident clinical manifestations of vomiting, diarrhea and dyskinesia in Jilin province in China. Antigenic and genomic characterizations of the virus (isolate PHEV-JLsp09) were based on multiplex PCR and negative staining electron microscopy and sequence analysis of the Hemagglutinin-esterase (HE) gene. These piglets were diagnosed with Porcine hemagglutinating encephalomyelitis virus (PHEV)

    Knowledge and attitude on maternal health care among rural-to-urban migrant women in Shanghai, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In China, with the urbanization, women migrated from rural to big cities presented much higher maternal mortality rates than local residents. Health knowledge is one of the key factors enabling women to be aware of their rights and health status in order to seek appropriate health services. This study aims to assess the knowledge and attitude on maternal health care and the contributing factors to being knowledgeable among rural-to-urban migrant women in Shanghai.</p> <p>Methods</p> <p>A cross-sectional study was conducted in a district center hospital in Shanghai where migrants gathered. Totally 475 rural-to-urban migrant pregnant women were interviewed and completed the self-administered questionnaire after obtaining informed consent.</p> <p>Results</p> <p>The mean score of knowledge on maternal health care was 8.28 out of 12. However, only 36.6% women had attended the required 5 antenatal checks, and 58.3% of the subjects thought financial constrains being the main reason for not attending antenatal care. It was found that higher level of education (OR = 3.3, 95%CI: 1.8–3.8), husbands' Shanghai residence (OR = 4.0, 95%CI: 1.3–12.1) and better family income (OR = 3.3, 95%CI: 1.4–8.2) were associated with better knowledge.</p> <p>Conclusions</p> <p>Rural-to-urban migrant women's unawareness of maternal health service, together with their vulnerable living status, influences their utilization of maternal health care. Tailored maternal health education and accessible services are in demands for this population.</p

    Aromaticity in cyanuric acid

    Get PDF
    This study analyzes the aromatic nature of cyanuric acid (hexahydrotriazine) and some of its derivatives, in terms of aromatic stabilization energy (ASE) and electronic behavior. The simplest molecule (C3N3O3H3) is the most aromatic item out of the entire set, but some of the others also display aromatic character. The structure of all the rings is analyzed considering their molecular orbitals as well as studying the inductive effect

    Detection of Head-to-Tail DNA Sequences of Human Bocavirus in Clinical Samples

    Get PDF
    Parvoviruses are single stranded DNA viruses that replicate in a so called β€œrolling-hairpin” mechanism, a variant of the rolling circle replication known for bacteriophages like Ο•X174. The replication intermediates of parvoviruses thus are concatemers of head-to-head or tail-to-tail structure. Surprisingly, in case of the novel human bocavirus, neither head-to-head nor tail-to-tail DNA sequences were detected in clinical isolates; in contrast head-to-tail DNA sequences were identified by PCR and sequencing. Thereby, the head-to-tail sequences were linked by a novel sequence of 54 bp of which 20 bp also occur as conserved structures of the palindromic ends of parvovirus MVC which in turn is a close relative to human bocavirus

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel Οˆβ€²β†’Ο€+Ο€βˆ’J/ψ(J/Οˆβ†’Ξ³ppΛ‰)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06Γ—1081.06\times 10^8 Οˆβ€²\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppΛ‰p\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=1861βˆ’13+6(stat)βˆ’26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Ξ“<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009

    Get PDF
    Insulin resistance is a hallmark of type 2 diabetes mellitus and is associated with a metabolic and cardiovascular cluster of disorders (dyslipidaemia, hypertension, obesity [especially visceral], glucose intolerance, endothelial dysfunction), each of which is an independent risk factor for cardiovascular disease (CVD). Multiple prospective studies have documented an association between insulin resistance and accelerated CVD in patients with type 2 diabetes, as well as in non-diabetic individuals. The molecular causes of insulin resistance, i.e. impaired insulin signalling through the phosphoinositol-3 kinase pathway with intact signalling through the mitogen-activated protein kinase pathway, are responsible for the impairment in insulin-stimulated glucose metabolism and contribute to the accelerated rate of CVD in type 2 diabetes patients. The current epidemic of diabetes is being driven by the obesity epidemic, which represents a state of tissue fat overload. Accumulation of toxic lipid metabolites (fatty acyl CoA, diacylglycerol, ceramide) in muscle, liver, adipocytes, beta cells and arterial tissues contributes to insulin resistance, beta cell dysfunction and accelerated atherosclerosis, respectively, in type 2 diabetes. Treatment with thiazolidinediones mobilises fat out of tissues, leading to enhanced insulin sensitivity, improved beta cell function and decreased atherogenesis. Insulin resistance and lipotoxicity represent the missing links (beyond the classical cardiovascular risk factors) that help explain the accelerated rate of CVD in type 2 diabetic patients
    • …
    corecore