162 research outputs found

    Monodisperse Liquid Crystal Network Particles Synthesized via Precipitation Polymerization

    Get PDF
    The production of liquid crystalline (LC) polymer particles with a narrow size distribution on a large scale remains a challenge. Here, we report the preparation of monodisperse, cross-linked liquid crystalline particles via precipitation polymerization. This versatile and scalable method yields polymer particles with a smectic liquid crystal order. Although the LC monomers are randomly dissolved in solution, the oligomers self-align and LC order is induced. For the polymerization, a smectic LC monomer mixture consisting of cross-linkers and benzoic acid hydrogen-bonded dimers is used. The average diameter of the particles increases at higher polymerization temperatures and in better solvents, whereas the monomer and initiator concentration have only minor impact on the particle size. After deprotonating of the benzoic acid groups, the particles show rapid absorption of a common cationic dye, methylene blue. The methylene blue in the particles can be subsequently released with the addition of Ca2+, while monovalent ions fail to trigger the release. These results reveal that precipitation polymerization is an attractive method to prepare functional LC polymer particles of a narrow size distribution and on a large scale

    Rewritable Optical Patterns in Light-Responsive Ultrahigh Molecular Weight Polyethylene.

    Get PDF
    Spiropyran is used as a photochromic dye to create colored patterns in highly drawn ultrahigh molecular weight polyethylene (UHMW PE) films. The dye is incorporated in highly crystalline, drawn UHMW PE tapes and fibers and isomerizes to its merocyanine state upon UV light irradiation, resulting in a color change from transparent to purple. The isomerization from merocyanine to spiropyran to erase the color can be simply induced by using heat or a green LED light. The combination of the use of a mask and the reversibility of the isomerization results in colored patterns that can be written, erased, and rewritten using UV light and heat or green LED light

    Nanohybrid Materials with Tunable Birefringence via Cation Exchange in Polymer Films

    Get PDF
    In this work, a nanohybrid material based on a freestanding polymeric liquid crystal network capable of postmodification via cation exchange to tune birefringence is proposed. The smectic liquid crystal films can be infiltrated with a variety of cations, thereby changing the refractive indices (ne and no) and the effective birefringence (Δn) of the nanohybrid material, with reversible cation infiltration occurring within minutes. Birefringence could be tuned between values of 0.06 and 0.19, depending on the cation infiltrated into the network. Upon infiltration, a decrease in the smectic layer spacing is found with layer contraction independent of the induced change in birefringence. Potential applications are in the field of specialty optical devices, such as flexible, retunable reflective filters

    Nanorings and rods interconnected by self-assembly mimicking an artificial network of neurons

    Full text link
    [EN] Molecular electronics based on structures ordered as neural networks emerges as the next evolutionary milestone in the construction of nanodevices with unprecedented applications. However, the straightforward formation of geometrically defined and interconnected nanostructures is crucial for the production of electronic circuitry nanoequivalents. Here we report on the molecularly fine-tuned self-assembly of tetrakis-Schiff base compounds into nanosized rings interconnected by unusually large nanorods providing a set of connections that mimic a biological network of neurons. The networks are produced through self-assembly resulting from the molecular conformation and noncovalent intermolecular interactions. These features can be easily generated on flat surfaces and in a polymeric matrix by casting from solution under ambient conditions. The structures can be used to guide the position of electron-transporting agents such as carbon nanotubes on a surface or in a polymer matrix to create electrically conducting networks that can find direct use in constructing nanoelectronic circuits.The research leading to these results has received funding from ICIQ, ICREA, the Spanish Ministerio de Economia y Competitividad (MINECO) through project CTQ2011-27385 and the European Community Seventh Framework Program (FP7-PEOPLE-ITN-2008, CONTACT consortium) under grant agreement number 238363. We acknowledge E. C. Escudero-Adan, M. Martinez-Belmonte and E. Martin from the X-ray department of ICIQ for crystallographic analysis, and M. Moncusi, N. Argany, R. Marimon, M. Stefanova and L. Vojkuvka from the Servei de Recursos Cientifics i Tecnics from Universitat Rovira i Virgili (Tarragona, Spain).Escarcega-Bobadilla, MV.; Zelada-Guillen, GA.; Pyrlin, SV.; Wegrzyn, M.; Ramos, MMD.; Giménez Torres, E.; Stewart, A.... (2013). Nanorings and rods interconnected by self-assembly mimicking an artificial network of neurons. Nature Communications. 4:2648-2648. https://doi.org/10.1038/ncomms3648S264826484Champness, N. R. Making the right connections. Nat. Chem. 4, 149–150 (2012).Hopfield, J. J. & Tank, D. W. Computing with neural circuits: A model. Science 233, 625–633 (1986).Andres, P. R. et al. Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters. Science 273, 1690–1693 (1996).Eichen, Y., Braun, E., Sivan, U. & Ben-Yoseph, G. Self-assembly of nanoelectronic components and circuits using biological templates. Acta Polym. 49, 663–670 (1998).Kawakami, T. et al. Possibilities of molecule-based spintronics of DNA wires, sheets, and related materials. Int. J. Quantum Chem. 105, 655–671 (2005).Kashtan, N., Itzkovitz, S., Milo, R. & Alon, U. Topological generalizations of network motifs. Phys. Rev. E 70, 031909 (2004).Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotech. 2, 687–691 (2007).Lafferentz, L. et al. Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nat. Chem. 4, 215–220 (2012).Alivisatos, A. P. et al. From molecules to materials: current trends and future directions. Adv. Mater. 10, 1297–1336 (1998).Pauling, L. The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51, 1010–1026 (1929).Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive self-assembly of polyhedra into complex structures. Science 337, 453–457 (2012).De Graaf, J. & Manna, L. A roadmap for the assembly of polyhedral particles. Science 337, 417–418 (2012).Percec, V. et al. Controlling polymer shape through the self-assembly of dendritic side-groups. Nature 391, 161–164 (1998).Stupp, S. I. et al. Supramolecular materials: self-organized nanostructures. Science 276, 384–389 (1997).Mann, S. The chemistry of form. Angew. Chem. Int. Ed. 39, 3392–3406 (2000).Sakakibara, K., Hill, J. P. & Ariga, K. Thin-film-based nanoarchitectures for soft matter: controlled assemblies into two-dimensional worlds. Small 7, 1288–1308 (2011).Huang, Z. et al. Pulsating tubules from noncovalent macrocycles. Science 337, 1521–1526 (2012).Ackermann, D., Jester, S.-S. & Famulok, M. Design strategy for DNA rotaxanes with a mechanically reinforced PX100 axle. Angew. Chem. Int. Ed. 27, 6771–6775 (2012).Marx, J. L. Microtubules: versatile organelles. Science 181, 1236–1237 (1973).Heus, H. A. & Pardi, A. Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. Science 253, 191–194 (1991).Braun, E., Eichen, Y., Sivan, U. & Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775–778 (1998).Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21, 1171–1178 (2003).Cai, X. et al. Integrated compact optical vortex beam emitters. Science 338, 363–365 (2012).Clark, A. W. & Cooper, J. M. Nanogap ring antennae as plasmonically coupled SERRS substrates. Small 7, 119–125 (2011).Armani, A. M., Kulkarni, R. P., Fraser, S. E., Flagan, R. C. & Vahala, K. J. Label-free, single-molecule detection with optical microcavities. Science 317, 783–787 (2007).Frischmann, P. D., Guieu, S., Tabeshi, R. & MacLachlan, M. J. Columnar organization of head-to-tail self-assembled Pt4 rings. J. Am. Chem. Soc. 132, 7668–7675 (2010).Frischmann, P. D. et al. Capsule formation, carboxylate exchange, and DFT exploration of cadmium cluster metallocavitands: highly dynamic supramolecules. J. Am. Chem. Soc. 132, 3893–3908 (2010).Akine, S., Hotate, S. & Nabeshima, T. A molecular leverage for helicity control and helix Inversion. J. Am. Chem. Soc. 133, 13868–13871 (2011).Salassa, G. et al. Extremely strong self-assembly of a bimetallic salen complex visualized at the single-molecule level. J. Am. Chem. Soc. 134, 7186–7192 (2012).Escárcega-Bobadilla, M. V., Salassa, G., Martínez Belmonte, M., Escudero-Adán, E. C. & Kleij, A. W. Versatile switching in substrate topicity: supramolecular chirality induction in di- and trinuclear host complexes. Chem. Eur. J. 18, 6805–6810 (2012).Frischmann, P. D., Jiang, J., Hui, J. K.-H., Grzybowski, J. J. & MacLachlan, M. J. Reversible—irreversible approach to Schiff base macrocycles. Access to isomeric macrocycles with multiple salphen pockets. Org. Lett. 10, 1255–1258 (2008).Glaser, T. Rational design of single-molecule magnets: a supramolecular approach. Chem. Commun. 47, 116–130 (2011).Lee, E. C. et al. Understanding of assembly phenomena by aromatic−aromatic interactions: benzene dimer and the substituted systems. J. Phys. Chem. A 111, 3446–3457 (2007).Grybowski, B. A., Wilmer, C. E., Kim, J., Browne, K. P. & Bishop, K. J. M. Self-assembly: from crystals to cells. Soft Matter. 5, 1110–1128 (2009).Martínez Belmonte, M. et al. Self-assembly of Zn(salphen) complexes: steric regulation, stability studies and crystallographic analysis revealing an unexpected dimeric 3,3′-t-Bu-substituted Zn(salphen) complex. Dalton Trans. 39, 4541–4550 (2010).Salassa, G., Castilla, A. M. & Kleij, A. W. Cooperative self-assembly of a macrocyclic Schiff base complex. Dalton Trans. 40, 5236–5243 (2011).Hormoz, S. & Brenner, M. P. Design principles for self-assembly with short-range interactions. Proc. Natl Acad. Sci. 108, 5193–5198 (2011).Biemans, H. A. M. et al. Hexakis porphyrinato benzenes. A new class of porphyrin arrays. J. Am. Chem. Soc. 120, 11054–11060 (1998).Lensen, M. C. et al. Aided self-assembly of porphyrin nanoaggregates into ring-shaped architectures. Chem. Eur. J. 10, 831–839 (2004).Martin, A., Buguin, A. & Brochard-Wyart, F. Dewetting nucleation centers at soft interfaces. Langmuir. 17, 6553–6559 (2001).Schenning, A. P. H. J., Benneker, F. B. G., Geurts, H. P. M., Liu, X. Y. & Nolte, R. J. M. Porphyrin wheels. J. Am. Chem. Soc. 118, 8549–8552 (1996).Deegan, R. D. et al. Capillary flow as the cause of ring strains from dried liquid drops. Nature 389, 827–829 (1997).Scriven, L. E. & Sternling, C. V. The Marangoni effects. Nature 187, 186–188 (1960).Cai, Y. & Newby, B. Z. Marangoni flow-induced self-assembly of hexagonal and stripe-like nanoparticle patterns. J. Am. Chem. Soc. 130, 6076–6077 (2008).Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).Mann, S. Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nat. Mater. 8, 781–792 (2009).Gröschnel, A. H. et al. Precise hierarchical self-assembly of multicompartment micelles. Nat. Commun. 3, 710 (2012).Adam, M., Dogic, Z., Keller, S. L. & Fraden, S. Entropically driven microphase transitions in mixtures of colloidal rods and spheres. Nature 393, 349–352 (1998).Ohara, P. C., Heath, J. R. & Gelbart, W. M. Self-assembly of submicrometer rings of particles from solutions of nanoparticles. Angew. Chem. Int. Ed. 36, 1077–1080 (1997).Xu, J., Xia, J. & Lin, Z. Evaporation-induced self-assembly of nanoparticles from a sphere-on-flat geometry. Angew. Chem. Int. Ed. 46, 1860–1863 (2007).Yosef, G. & Rabani, E. Self-assembly of nanoparticles into rings: A lattice-gas model. J. Phys. Chem. B 110, 20965–20972 (2006).Khanal, B. P. & Zubarev, E. R. Rings of nanorods. Angew. Chem. Int. Ed. 46, 2195–2198 (2007).Wang, Z. et al. One-step, self-assembly, alignment, and patterning of organic semiconductor nanowires by controlled evaporation of confined microfluids. Angew. Chem. Int. Ed. 50, 2811–2815 (2011).Hong, S. W. et al. Directed self-assembly of gradient concentric carbon nanotube rings. Adv. Func. Mater. 18, 2114–2122 (2008).Palma, M. et al. Controlled formation of carbon nanotube junctions via linker-induced assembly in aqueous solution. J. Am. Chem. Soc. 135, 8440–8443 (2013).Horcas, I. et al. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).Soler, J. M. et al. The SIESTA method for ab initio order-n materials simulation. J. Phys. Cond. Matter 14, 2745–2779 (2002).Haynes, P. D., Mostof, A. A., Skylaris, C. & Payne, M. C. ONETEP: Linear-scaling density-functional theory with plane-waves. J. Phys. Conf. Ser. 26, 143–148 (2006).Valiev, M. et al. NWCHEM: A comprehensive and scalable open-source solution for large scale molecular simulations. Comp. Phys. Commun. 181, 1477–1489 (2010).Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117, 1–19 (1995)

    Nanospiral Formation by Droplet Drying: One Molecule at a Time

    Get PDF
    We have created nanospirals by self-assembly during droplet evaporation. The nanospirals, 60–70 nm in diameter, formed when solvent mixtures of methanol and m-cresol were used. In contrast, spin coating using only methanol as the solvent produced epitaxial films of stripe nanopatterns and using only m-cresol disordered structure. Due to the disparity in vapor pressure between the two solvents, droplets of m-cresol solution remaining on the substrate serve as templates for the self-assembly of carboxylic acid molecules, which in turn allows the visualization of solution droplet evaporation one molecule at a time

    Polymerized liquid crystals as actuators and sensors

    No full text
    Novel liquid-crystalline polymers that respond to specific stimuli by changing their shape or color can be used as soft actuators and optical sensors for environmental, energy, and biomedical applications

    Cholesteric liquid crystalline polymer networks as optical sensors

    No full text
    In the past decade, chiral nematic liquid crystals (LCs) have emerged as an attractive material for the development of stimuli-responsive systems (White et al. 2010; Ge and Yin 2011; Fenzl et al. 2014; Mulder et al. 2014; Stumpel et al. 2014). Due to the periodic alteration of their refractive indices, they act as one-dimensional photonic structures and reect circularly polarized light of same handedness. The reection of light is governed by Bragg’s law: λ θb = nP cos where λb is the wavelength of Bragg reection, n is the average refractive index, and P is the length of the helical pitch. The pitch of a chiral nematic is dened as the length traversed by the molecular director nˆ on 360° rotation (Figure 4.1a). It is inversely proportional to the concentration [C] as well as the helical twisting power

    Full color camouflage in a printable photonic blue-colored polymer

    No full text
    \u3cp\u3eA blue reflective photonic polymer coating which can be patterned in full color, from blue to red, by printing with an aqueous calcium nitrate solution has been fabricated. Color change in the cholesteric liquid-crystalline polymer network over the entire visible spectrum is obtained by the use of nonreactive mesogen. The pattern in the coating is hidden in the blue color dry state and appears upon exposure to water or by exhaling breath onto it due to different degrees of swelling of the polymer network. The degree of swelling depends on the printed amount of calcium which acts as a cross-linker. The printed full color pattern can also be hidden simply by using a circular polarizer. The responsive full color camouflage polymers are interesting for various applications ranging from responsive house and automobile decors to anticounterfeit labels and data encryption.\u3c/p\u3
    • …
    corecore