16 research outputs found

    Acute heat stress and dietary methionine effects on IGF-I, GHR, and UCP mRNA expression in liver and muscle of quails.

    Get PDF
    This study evaluated the expression of insulin-like growth factor I (IGF-I), growth hormone receptor (GHR), and uncoupling protein (UCP) mRNA in muscle and liver of quails that were in thermal comfort or exposed to heat stress and that were fed diets with or without methionine supplementation. Meat quails were fed a diet that either met the nutritional demands for methionine (MS) or did not meet this demand (methionine-deficient diet, MD). The animals were either kept at a thermal comfort temperature (25°C) or exposed to heat stress (38°C for 24 h starting on the 6th day). RNA was extracted from liver and breast muscle, and cDNA was synthesized and amplified using quantitative reverse transcription-polymerase chain reaction. Animals that were fed the MS diet and remained at the thermal comfort temperature exhibited increased IGF-I mRNA expression in the liver (0.56 AU). The GHR mRNA expression in the liver and muscle was influenced by both the study variables. Animals receiving the MS diet showed higher GHR expression, while increased expression was observed in animals at the thermal comfort temperature. The UCP mRNA expression in the muscle was influenced by both methionine supplementation and heat stress. Higher expression was observed in animals that received the MD diet (2.29 vs 3.77 AU) and in animals kept in thermal comfort. Our results suggest that heat stress negatively affects the expression of growth-related genes and that methionine supplementation is necessary to appropriately maintain the levels of IGF-I, GHR, and UCP transcripts for animal metabolism

    Comparison of the Quality Adjusting of Nonlinear Models for Organs, Carcass and Body Components in Meat-Type (Coturnix Coturnix Coturnix) and Laying-Type (Coturnix Coturnix Japonica) Quail

    No full text
    ABSTRACT The objective of this study was to evaluate the adjustment quality of nonlinear models to data organs growth, carcass and body components of meat-type (Coturnix coturnix coturnix) and japanese laying-type (Coturnix coturnix japonica) quail. A total of 1350 quails from one to 42 d old were distributed in a completely randomized design, with five replicates each. To determine the organs growth (gut, heart, liver and gizzard), carcass and body components (wing, thigh and drumstick, back and breast), two quails per repetition were slaughtered weekly. The data were evaluated in function of different nonlinear models (Logistical, Brody, Richards, Von Bertalanffy and Gompertz). All models studied adjusted the data, differing in adjustment quality. Brody model showed the best description of gut length to all treatments. For the data gizzard weight, heart, liver and gut, the models that best adjusted, presenting smaller residual mean square and numbers iterations were Gompertz and Logistical. The Gompertz, Logistic and Von Bertalanffy models were the most adequate to describe the thigh and drumstick growth, back and breast, and Gompertz models and Logistic to describe the wing growth and carcass, showing lesser number of iterations to achieve the convergence of date, as well as low residual mean square and squares sums of the regression residuals. The Gompertz model was the most appropriate to describe the organs growth and body components in meat- and laying-type quail when evaluated in growth phase

    Comparison of the Quality Adjusting of Nonlinear Models for Organs, Carcass and Body Components in Meat-Type (Coturnix Coturnix Coturnix) and Laying-Type (Coturnix Coturnix Japonica) Quail

    No full text
    <div><p>ABSTRACT The objective of this study was to evaluate the adjustment quality of nonlinear models to data organs growth, carcass and body components of meat-type (Coturnix coturnix coturnix) and japanese laying-type (Coturnix coturnix japonica) quail. A total of 1350 quails from one to 42 d old were distributed in a completely randomized design, with five replicates each. To determine the organs growth (gut, heart, liver and gizzard), carcass and body components (wing, thigh and drumstick, back and breast), two quails per repetition were slaughtered weekly. The data were evaluated in function of different nonlinear models (Logistical, Brody, Richards, Von Bertalanffy and Gompertz). All models studied adjusted the data, differing in adjustment quality. Brody model showed the best description of gut length to all treatments. For the data gizzard weight, heart, liver and gut, the models that best adjusted, presenting smaller residual mean square and numbers iterations were Gompertz and Logistical. The Gompertz, Logistic and Von Bertalanffy models were the most adequate to describe the thigh and drumstick growth, back and breast, and Gompertz models and Logistic to describe the wing growth and carcass, showing lesser number of iterations to achieve the convergence of date, as well as low residual mean square and squares sums of the regression residuals. The Gompertz model was the most appropriate to describe the organs growth and body components in meat- and laying-type quail when evaluated in growth phase.</p></div
    corecore