186 research outputs found

    Anchoring of proteins to lactic acid bacteria

    Get PDF
    The anchoring of proteins to the cell surface of lactic acid bacteria (LAB) using genetic techniques is an exciting and emerging research area that holds great promise for a wide variety of biotechnological applications. This paper reviews five different types of anchoring domains that have been explored for their efficiency in attaching hybrid proteins to the cell membrane or cell wall of LAB. The most exploited anchoring regions are those with the LPXTG box that bind the proteins in a covalent way to the cell wall. In recent years, two new modes of cell wall protein anchoring have been studied and these may provide new approaches in surface display. The important progress that is being made with cell surface display of chimaeric proteins in the areas of vaccine development and enzyme- or whole-cell immobilisation is highlighted.

    Phosphate Starvation Triggers Production and Secretion of an Extracellular Lipoprotein in Caulobacter crescentus

    Get PDF
    Life in oligotrophic environments necessitates quick adaptive responses to a sudden lack of nutrients. Secretion of specific degradative enzymes into the extracellular medium is a means to mobilize the required nutrient from nearby sources. The aquatic bacterium Caulobacter crescentus must often face changes in its environment such as phosphate limitation. Evidence reported in this paper indicates that under phosphate starvation, C. crescentus produces a membrane surface-anchored lipoprotein named ElpS subsequently released into the extracellular medium. A complete set of 12 genes encoding a type II secretion system (T2SS) is located adjacent to the elpS locus in the C. crescentus genome. Deletion of this T2SS impairs release of ElpS in the environment, which surprisingly remains present at the cell surface, indicating that the T2SS is not involved in the translocation of ElpS to the outer membrane but rather in its release. Accordingly, treatment with protease inhibitors prevents release of ElpS in the extracellular medium suggesting that ElpS secretion relies on a T2SS-secreted protease. Finally, secretion of ElpS is associated with an increase in alkaline phosphatase activity in culture supernatants, suggesting a role of the secreted protein in inorganic phosphate mobilization. In conlusion, we have shown that upon phosphate starvation, C. crescentus produces an outer membrane bound lipoprotein, ElpS, which is further cleaved and released in the extracellular medium in a T2SS-dependent manner. Our data suggest that ElpS is associated with an alkaline phosphatase activity, thereby allowing the bacterium to gather inorganic phosphates from a poor environment

    The bashful and the boastful : prestigious leaders and social change in Mesolithic Societies

    Get PDF
    The creation and maintenance of influential leaders and authorities is one of the key themes of archaeological and historical enquiry. However the social dynamics of authorities and leaders in the Mesolithic remains a largely unexplored area of study. The role and influence of authorities can be remarkably different in different situations yet they exist in all societies and in almost all social contexts from playgrounds to parliaments. Here we explore the literature on the dynamics of authority creation, maintenance and contestation in egalitarian societies, and discuss the implications for our interpretation and understanding of the formation of authorities and leaders and changing social relationships within the Mesolithic

    Identification of a Regulatory T Cell Specific Cell Surface Molecule that Mediates Suppressive Signals and Induces Foxp3 Expression

    Get PDF
    Regulatory T (Treg) cells control immune activation and maintain tolerance. How Tregs mediate their suppressive function is unclear. Here we identified a cell surface molecule, called GARP, (or LRRC32), which within T cells is specifically expressed in Tregs activated through the T cell receptor (TCR). Ectopic expression of GARP in human naïve T (TN) cells inhibited their proliferation and cytokine secretion upon TCR activation. Remarkably, GARP over-expression in TN cells induced expression of Treg master transcription factor Foxp3 and endowed them with a partial suppressive function. The extracellular but not the cytoplasmic region of GARP, was necessary for these functions. Silencing Foxp3 in human Treg cells reduced expression of GARP and attenuated their suppressive function. However, GARP function was not affected when Foxp3 was downregulated in GARP-overexpressing cells, while silencing GARP in Foxp3-overexpressing cells reduced their suppressive activity. These findings reveal a novel cell surface molecule-mediated regulatory mechanism, with implications for modulating aberrant immune responses

    Complete Genome Sequence of the Complex Carbohydrate-Degrading Marine Bacterium, Saccharophagus degradans Strain 2-40T

    Get PDF
    The marine bacterium Saccharophagus degradans strain 2-40 (Sde 2-40) is emerging as a vanguard of a recently discovered group of marine and estuarine bacteria that recycles complex polysaccharides. We report its complete genome sequence, analysis of which identifies an unusually large number of enzymes that degrade >10 complex polysaccharides. Not only is this an extraordinary range of catabolic capability, many of the enzymes exhibit unusual architecture including novel combinations of catalytic and substrate-binding modules. We hypothesize that many of these features are adaptations that facilitate depolymerization of complex polysaccharides in the marine environment. This is the first sequenced genome of a marine bacterium that can degrade plant cell walls, an important component of the carbon cycle that is not well-characterized in the marine environment

    Laboratory Evolution of Fast-Folding Green Fluorescent Protein Using Secretory Pathway Quality Control

    Get PDF
    Green fluorescent protein (GFP) has undergone a long history of optimization to become one of the most popular proteins in all of cell biology. It is thermally and chemically robust and produces a pronounced fluorescent phenotype when expressed in cells of all types. Recently, a superfolder GFP was engineered with increased resistance to denaturation and improved folding kinetics. Here we report that unlike other well-folded variants of GFP (e.g., GFPmut2), superfolder GFP was spared from elimination when targeted for secretion via the SecYEG translocase. This prompted us to hypothesize that the folding quality control inherent to this secretory pathway could be used as a platform for engineering similar ‘superfolded’ proteins. To test this, we targeted a combinatorial library of GFPmut2 variants to the SecYEG translocase and isolated several superfolded variants that accumulated in the cytoplasm due to their enhanced folding properties. Each of these GFP variants exhibited much faster folding kinetics than the parental GFPmut2 protein and one of these, designated superfast GFP, folded at a rate that even exceeded superfolder GFP. Remarkably, these GFP variants exhibited little to no loss in specific fluorescence activity relative to GFPmut2, suggesting that the process of superfolding can be accomplished without altering the proteins' normal function. Overall, we demonstrate that laboratory evolution combined with secretory pathway quality control enables sampling of largely unexplored amino-acid sequences for the discovery of artificial, high-performance proteins with properties that are unparalleled in their naturally occurring analogues

    Exopolysaccharide-associated protein sorting in environmental organisms: the PEP-CTERM/EpsH system. Application of a novel phylogenetic profiling heuristic

    Get PDF
    BACKGROUND: Protein translocation to the proper cellular destination may be guided by various classes of sorting signals recognizable in the primary sequence. Detection in some genomes, but not others, may reveal sorting system components by comparison of the phylogenetic profile of the class of sorting signal to that of various protein families. RESULTS: We describe a short C-terminal homology domain, sporadically distributed in bacteria, with several key characteristics of protein sorting signals. The domain includes a near-invariant motif Pro-Glu-Pro (PEP). This possible recognition or processing site is followed by a predicted transmembrane helix and a cluster rich in basic amino acids. We designate this domain PEP-CTERM. It tends to occur multiple times in a genome if it occurs at all, with a median count of eight instances; Verrucomicrobium spinosum has sixty-five. PEP-CTERM-containing proteins generally contain an N-terminal signal peptide and exhibit high diversity and little homology to known proteins. All bacteria with PEP-CTERM have both an outer membrane and exopolysaccharide (EPS) production genes. By a simple heuristic for screening phylogenetic profiles in the absence of pre-formed protein families, we discovered that a homolog of the membrane protein EpsH (exopolysaccharide locus protein H) occurs in a species when PEP-CTERM domains are found. The EpsH family contains invariant residues consistent with a transpeptidase function. Most PEP-CTERM proteins are encoded by single-gene operons preceded by large intergenic regions. In the Proteobacteria, most of these upstream regions share a DNA sequence, a probable cis-regulatory site that contains a sigma-54 binding motif. The phylogenetic profile for this DNA sequence exactly matches that of three proteins: a sigma-54-interacting response regulator (PrsR), a transmembrane histidine kinase (PrsK), and a TPR protein (PrsT). CONCLUSION: These findings are consistent with the hypothesis that PEP-CTERM and EpsH form a protein export sorting system, analogous to the LPXTG/sortase system of Gram-positive bacteria, and correlated to EPS expression. It occurs preferentially in bacteria from sediments, soils, and biofilms. The novel method that led to these findings, partial phylogenetic profiling, requires neither global sequence clustering nor arbitrary similarity cutoffs and appears to be a rapid, effective alternative to other profiling methods

    Escherichia coli Bacteriocins: Antimicrobial Efficacy and Prevalence among Isolates from Patients with Bacteraemia

    Get PDF
    Bacteriocins are antimicrobial peptides generally active against bacteria closely related to the producer. Escherichia coli produces two types of bacteriocins, colicins and microcins. The in vitro efficacy of isolated colicins E1, E6, E7, K and M, was assessed against Escherichia coli strains from patients with bacteraemia of urinary tract origin. Colicin E7 was most effective, as only 13% of the tested strains were resistant. On the other hand, 32%, 33%, 43% and 53% of the tested strains exhibited resistance to colicins E6, K, M and E1. Moreover, the inhibitory activity of individual colicins E1, E6, E7, K and M and combinations of colicins K, M, E7 and E1, E6, E7, K, M were followed in liquid broth for 24 hours. Resistance against individual colicins developed after 9 hours of treatment. On the contrary, resistance development against the combined action of 5 colicins was not observed. One hundred and five E. coli strains from patients with bacteraemia were screened by PCR for the presence of 5 colicins and 7 microcins. Sixty-six percent of the strains encoded at least one bacteriocin, 43% one or more colicins, and 54% one or more microcins. Microcins were found to co-occur with toxins, siderophores, adhesins and with the Toll/Interleukin-1 receptor domain-containing protein involved in suppression of innate immunity, and were significantly more prevalent among strains from non-immunocompromised patients. In addition, microcins were highly prevalent among non-multidrug-resistant strains compared to multidrug-resistant strains. Our results indicate that microcins contribute to virulence of E. coli instigating bacteraemia of urinary tract origin

    Flanking signal and mature peptide residues influence signal peptide cleavage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Signal peptides (SPs) mediate the targeting of secretory precursor proteins to the correct subcellular compartments in prokaryotes and eukaryotes. Identifying these transient peptides is crucial to the medical, food and beverage and biotechnology industries yet our understanding of these peptides remains limited. This paper examines the most common type of signal peptides cleavable by the endoprotease signal peptidase I (SPase I), and the residues flanking the cleavage sites of three groups of signal peptide sequences, namely (i) eukaryotes (Euk) (ii) Gram-positive (Gram+) bacteria, and (iii) Gram-negative (Gram-) bacteria.</p> <p>Results</p> <p>In this study, 2352 secretory peptide sequences from a variety of organisms with amino-terminal SPs are extracted from the manually curated SPdb database for analysis based on physicochemical properties such as p<it>I</it>, aliphatic index, GRAVY score, hydrophobicity, net charge and position-specific residue preferences. Our findings show that the three groups share several similarities in general, but they display distinctive features upon examination in terms of their amino acid compositions and frequencies, and various physico-chemical properties. Thus, analysis or prediction of their sequences should be separated and treated as distinct groups.</p> <p>Conclusion</p> <p>We conclude that the peptide segment recognized by SPase I extends to the start of the mature protein to a limited extent, upon our survey of the amino acid residues surrounding the cleavage processing site. These flanking residues possibly influence the cleavage processing and contribute to non-canonical cleavage sites. Our findings are applicable in defining more accurate prediction tools for recognition and identification of cleavage site of SPs.</p
    corecore