10 research outputs found

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    A survey on static and quasi-static finite element models of the human cervical spine

    No full text
    Finite element analyses are an important source of information on the biomechanical behaviour of the cervical spine; as well as an important tool in the design and evaluation of spinal instrumentation. This article presents a comprehensive survey of the finite element models of the cervical spine that have been used to study its pathological/nonpathological biomechanics under static/quasi-static loading conditions. Publications that met the inclusion criteria were analysed to extract parameters relative to model identification (e.g., spine segment, population, utility, limitations), model structure (e.g., loading/boundary conditions, anatomical structures, constitutive representation), simulation structure (e.g., software), verification (e.g., convergence) and validation (e.g., validated procedure/output, assumptions). Besides summarizing different modelling approaches with their associated parameters, this article outlines generalities and issues related to the obtainment of such models. The survey shows that authors often fail to report parameters that are critical for the reproducibility of results and that, even with fully reported parameters, these models are inherently difficult to replicate because they generally are patient-specific with their geometry based on data from in-house specimens/subjects. Overall, while the survey contributes to an understanding of the implications of following different modelling approaches and allows to take advantage of previously developed models, further research is required to improve the accuracy and utility of these models. © 2017, Springer-Verlag France SAS, part of Springer Nature

    Update on tick-borne rickettsioses around the world: A geographic approach

    No full text
    Tick-borne rickettsioses are caused by obligate intracellular bacteria belonging to the spotted fever group of the genus Rickettsia. These zoonoses are among the oldest known vector-borne diseases. However, in the past 25 years, the scope and importance of the recognized tick-associated rickettsial pathogens have increased dramatically, making this complex of diseases an ideal paradigm for the understanding of emerging and reemerging infections. Several species of tick-borne rickettsiae that were considered nonpathogenic for decades are now associated with human infections, and novel Rickettsia species of undetermined pathogenicity continue to be detected in or isolated from ticks around the world. This remarkable expansion of information has been driven largely by the use of molecular techniques that have facilitated the identification of novel and previously recognized rickettsiae in ticks. New approaches, such as swabbing of eschars to obtain material to be tested by PCR, have emerged in recent years and have played a role in describing emerging tick-borne rickettsioses. Here, we present the current knowledge on tick-borne rickettsiae and rickettsioses using a geographic approach toward the epidemiology of these diseases

    Update on Tick-Borne Rickettsioses around the World: a Geographic Approach

    No full text
    corecore