439 research outputs found
Association of Panton Valentine Leukocidin (PVL) genes with methicillin resistant Staphylococcus aureus (MRSA) in Western Nepal: a matter of concern for community infections (a hospital based prospective study)
BACKGROUND: Methicillin resistant Staphylococcus aureus (MRSA) is a major human pathogen associated with nosocomial and community infections. Panton Valentine leukocidin (PVL) is considered one of the important virulence factors of S. aureus responsible for destruction of white blood cells, necrosis and apoptosis and as a marker of community acquired MRSA. This study was aimed to determine the prevalence of PVL genes among MRSA isolates and to check the reliability of PVL as marker of community acquired MRSA isolates from Western Nepal. METHODS: A total of 400 strains of S. aureus were collected from clinical specimens and various units (Operation Theater, Intensive Care Units) of the hospital and 139 of these had been confirmed as MRSA by previous study. Multiplex PCR was used to detect mecA and PVL genes. Clinical data as well as antimicrobial susceptibility data was analyzed and compared among PVL positive and negative MRSA isolates. RESULTS: Out of 139 MRSA isolates, 79 (56.8 %) were PVL positive. The majority of the community acquired MRSA (90.4 %) were PVL positive (Positive predictive value: 94.9 % and negative predictive value: 86.6 %), while PVL was detected only in 4 (7.1 %) hospital associated MRSA strains. None of the MRSA isolates from hospital environment was found positive for the PVL genes. The majority of the PVL positive strains (75.5 %) were isolated from pus samples. Antibiotic resistance among PVL negative MRSA isolates was found higher as compared to PVL positive MRSA. CONCLUSION: Our study showed high prevalence of PVL among community acquired MRSA isolates. Absence of PVL among MRSA isolates from hospital environment indicates its poor association with hospital acquired MRSA and therefore, PVL may be used a marker for community acquired MRSA. This is first study from Nepal, to test PVL among MRSA isolates from hospital environment. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12879-016-1531-1) contains supplementary material, which is available to authorized users
The origin of dust in galaxies revisited: the mechanism determining dust content
The origin of cosmic dust is a fundamental issue in planetary science. This
paper revisits the origin of dust in galaxies, in particular, in the Milky Way,
by using a chemical evolution model of a galaxy composed of stars, interstellar
medium, metals (elements heavier than helium), and dust. We start from a review
of time-evolutionary equations of the four components, and then, we present
simple recipes for the stellar remnant mass and yields of metal and dust based
on models of stellar nucleosynthesis and dust formation. After calibrating some
model parameters with the data from the solar neighborhood, we have confirmed a
shortage of the stellar dust production rate relative to the dust destruction
rate by supernovae if the destruction efficiency suggested by theoretical works
is correct. If the dust mass growth by material accretion in molecular clouds
is active, the observed dust amount in the solar neighborhood is reproduced. We
present a clear analytic explanation of the mechanism for determining dust
content in galaxies after the activation of accretion growth: a balance between
accretion growth and supernova destruction. Thus, the dust content is
independent of the uncertainty of the stellar dust yield after the growth
activation. The timing of the activation is determined by a critical metal mass
fraction which depends on the growth and destruction efficiencies. The solar
system formation seems to have occurred well after the activation and plenty of
dust would have existed in the proto-solar nebula.Comment: 12 pages, 11 figure
Molecular bases of diabetic nephropathy
The determinant of the diabetic nephropathy is hyperglycemia, but hypertension and other genetic factors are also involved. Glomerulus is the focus of the injury, where mesangial cell proliferation and extracellular matrix occur because of the increase of the intra- and extracellular glucose concentration and overexpression of GLUT1. Sequentially, there are increases in the flow by the poliol pathway, oxidative stress, increased intracellular production of advanced glycation end products (AGEs), activation of the PKC pathway, increase of the activity of the hexosamine pathway, and activation of TGF-beta1. High glucose concentrations also increase angiotensin II (AII) levels. Therefore, glucose and AII exert similar effects in inducing extracellular matrix formation in the mesangial cells, using similar transductional signal, which increases TGF-beta1 levels. In this review we focus in the effect of glucose and AII in the mesangial cells in causing the events related to the genesis of diabetic nephropathy. The alterations in the signal pathways discussed in this review give support to the observational studies and clinical assays, where metabolic and antihypertensive controls obtained with angiotensin-converting inhibitors have shown important and additive effect in the prevention of the beginning and progression of diabetic nephropathy. New therapeutic strategies directed to the described intracellular events may give future additional benefits.O principal determinante da nefropatia diabética é a hiperglicemia, mas hipertensão e fatores genéticos também estão envolvidos. O glomérulo é o foco de lesão, onde proliferação celular mesangial e produção excessiva de matriz extracelular decorrem do aumento da glicose intracelular, por excesso de glicose extracelular e hiperexpressão de GLUT1. Seguem-se aumento do fluxo pela via dos polióis, estresse oxidativo intracelular, produção intracelular aumentada de produtos avançados da glicação não enzimática (AGEs), ativação da via da PKC, aumento da atividade da via das hexosaminas e ativação de TGF-beta1. Altas concentrações de glicose também aumentam angiotensina II (AII) nas células mesangiais por aumento intracelular da atividade da renina (ações intrácrinas, mediando efeitos proliferativos e inflamatórios diretamente). Portanto, glicose e AII exercem efeitos proliferativos celulares e de matriz extracelular nas células mesangiais, utilizando vias de transdução de sinais semelhantes, que levam a aumento de TGF-beta1. Nesse estudo são revisadas as vias que sinalizam os efeitos da glicose e AII nas células mesangiais em causar os eventos-chaves relacionados à gênese da glomerulopatia diabética. As alterações das vias de sinalização implicadas na glomerulopatia, aqui revisadas, suportam dados de estudos observacionais/ensaios clínicos, onde controle metabólico e anti-hipertensivo, especificamente com inibidores do sistema renina-angiotensina, têm-se mostrado importantes - e aditivos - na prevenção do início e progressão da nefropatia. Novas estratégias terapêuticas dirigidas aos eventos intracelulares descritos deverão futuramente promover benefício adicional.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)HC Instituto do Coração Unidade de HipertensãoUSP FMUniversidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM) Laboratório de NefrologiaFundação Universitária de Cardiologia Instituto de Cardiologia Laboratório de Cardiologia Molecular e CelularUNIFESP, EPM, Laboratório de NefrologiaSciEL
MEF2 impairment underlies skeletal muscle atrophy in polyglutamine disease
Polyglutamine (polyQ) tract expansion leads to proteotoxic misfolding and drives a family of nine diseases. We study spinal and bulbar muscular atrophy (SBMA), a progressive degenerative disorder of the neuromuscular system caused by the polyQ androgen receptor (AR). Using a knock-in mouse model of SBMA, AR113Q mice, we show that E3 ubiquitin ligases which are a hallmark of the canonical muscle atrophy machinery are not induced in AR113Q muscle. Similarly, we find no evidence to suggest dysfunction of signaling pathways that trigger muscle hypertrophy or impairment of the muscle stem cell niche. Instead, we find that skeletal muscle atrophy is characterized by diminished function of the transcriptional regulator Myocyte Enhancer Factor 2 (MEF2), a regulator of myofiber homeostasis. Decreased expression of MEF2 target genes is age- and glutamine tract length-dependent, occurs due to polyQ AR proteotoxicity, and is associated with sequestration of MEF2 into intranuclear inclusions in muscle. Skeletal muscle from R6/2 mice, a model of Huntington disease which develops progressive atrophy, also sequesters MEF2 into inclusions and displays age-dependent loss of MEF2 target genes. Similarly, SBMA patient muscle shows loss of MEF2 target gene expression, and restoring MEF2 activity in AR113Q muscle rescues fiber size and MEF2-regulated gene expression. This work establishes MEF2 impairment as a novel mechanism of skeletal muscle atrophy downstream of toxic polyglutamine proteins and as a therapeutic target for muscle atrophy in these disorders
The immortalized UROtsa cell line as a potential cell culture model of human urothelium.
The UROtsa cell line was isolated from a primary culture of normal human urothelium through immortalization with a construct containing the SV40 large T antigen. It proliferates in serum-containing growth medium as a cell monolayer with little evidence of uroepithelial differentiation. The working hypothesis in the present study was that this cell line could be induced to differentiate and express known features of in situ urothelium if the original serum-containing growth medium was changed to a serum-free formulation. We demonstrated that the UROtsa cells could be successfully placed into a serum-free growth medium consisting of a 1:1 mixture of Dulbeco\u27s modified Eagle\u27s medium and Ham\u27s F-12 supplemented with selenium (5 ng/mL), insulin (5 microg/mL), transferrin (5 microg/mL), hydrocortisone (36 ng/mL), triiodothyronine (4 pg/mL), and epidermal growth factor (10 ng/mL). Under serum-free growth conditions, confluent UROtsa cells were shown by light microscopy to produce raised, three-dimensional structures. Routine ultrastructural examination disclosed these three-dimensional areas to consist of a stratified layer of cells that strongly resembled in situ urothelium. The cells displayed numerous desmosomal connections, complex interactions of the lateral membranes, and abundant intermediate filaments within the cytoplasm. Freeze fracture analysis demonstrated that the cells possessed tight-junction sealing strands and gap junctions. The overall morphology was most consistent with that found in the intermediate layers of in situ urothelium. The basal expression patterns of the metallothionein (MT) and heat shock proteins 27, 60, and 70 were determined in these cells, and expression was in agreement with that known to occur for in situ urothelium. The cells were also successfully tested for their ability to be stably transfected using expression vectors containing the MT-3 or MT-2A genes. The findings suggest that the UROtsa cells grown with a serum-free medium could be a valuable adjunct for studying environmental insult to the human urothelium in general and for the stress response in particular
Common Variants within MECP2 Confer Risk of Systemic Lupus Erythematosus
Systemic lupus erythematosus (SLE) is a predominantly female autoimmune disease that affects multiple organ systems. Herein, we report on an X-chromosome gene association with SLE. Methyl-CpG-binding protein 2 (MECP2) is located on chromosome Xq28 and encodes for a protein that plays a critical role in epigenetic transcriptional regulation of methylation-sensitive genes. Utilizing a candidate gene association approach, we genotyped 21 SNPs within and around MECP2 in SLE patients and controls. We identify and replicate association between SLE and the genomic element containing MECP2 in two independent SLE cohorts from two ethnically divergent populations. These findings are potentially related to the overexpression of methylation-sensitive genes in SLE
An atlas of genetic scores to predict multi-omic traits
The use of omic modalities to dissect the molecular underpinnings of common diseases and traits is becoming increasingly common. But multi-omic traits can be genetically predicted, which enables highly cost-effective and powerful analyses for studies that do not have multi-omics1. Here we examine a large cohort (the INTERVAL study2; n = 50,000 participants) with extensive multi-omic data for plasma proteomics (SomaScan, n = 3,175; Olink, n = 4,822), plasma metabolomics (Metabolon HD4, n = 8,153), serum metabolomics (Nightingale, n = 37,359) and whole-blood Illumina RNA sequencing (n = 4,136), and use machine learning to train genetic scores for 17,227 molecular traits, including 10,521 that reach Bonferroni-adjusted significance. We evaluate the performance of genetic scores through external validation across cohorts of individuals of European, Asian and African American ancestries. In addition, we show the utility of these multi-omic genetic scores by quantifying the genetic control of biological pathways and by generating a synthetic multi-omic dataset of the UK Biobank3 to identify disease associations using a phenome-wide scan. We highlight a series of biological insights with regard to genetic mechanisms in metabolism and canonical pathway associations with disease; for example, JAK-STAT signalling and coronary atherosclerosis. Finally, we develop a portal ( https://www.omicspred.org/ ) to facilitate public access to all genetic scores and validation results, as well as to serve as a platform for future extensions and enhancements of multi-omic genetic scores
RTL551 Treatment of EAE Reduces CD226 and T-bet+ CD4 T Cells in Periphery and Prevents Infiltration of T-bet+ IL-17, IFN-γ Producing T Cells into CNS
Recombinant T cell receptor ligands (RTLs) that target encephalitogenic T-cells can reverse clinical and histological signs of EAE, and are currently in clinical trials for treatment of multiple sclerosis. To evaluate possible regulatory mechanisms, we tested effects of RTL therapy on expression of pathogenic and effector T-cell maturation markers, CD226, T-bet and CD44, by CD4+ Th1 cells early after treatment of MOG-35-55 peptide-induced EAE in C57BL/6 mice. We showed that 1–5 daily injections of RTL551 (two-domain I-Ab covalently linked to MOG-35-55 peptide), but not the control RTL550 (“empty” two-domain I-Ab without a bound peptide) or Vehicle, reduced clinical signs of EAE, prevented trafficking of cells outside the spleen, significantly reduced the frequency of CD226 and T-bet expressing CD4+ T-cells in blood and inhibited expansion of CD44 expressing CD4+ T-cells in blood and spleen. Concomitantly, RTL551 selectively reduced CNS inflammatory lesions, absolute numbers of CNS infiltrating T-bet expressing CD4+ T-cells and IL-17 and IFN-γ secretion by CNS derived MOG-35-55 reactive cells cultured ex vivo. These novel results demonstrate that a major effect of RTL therapy is to attenuate Th1 specific changes in CD4+ T-cells during EAE and prevent expansion of effector T-cells that mediate clinical signs and CNS inflammation in EAE
Frameless linac-based stereotactic radiosurgery (SRS) for brain metastases: analysis of patient repositioning using a mask fixation system and clinical outcomes
<p>Abstract</p> <p>Purpose</p> <p>To assess the accuracy of patient repositioning and clinical outcomes of frameless stereotactic radiosurgery (SRS) for brain metastases using a stereotactic mask fixation system.</p> <p>Patients and Methods</p> <p>One hundred two patients treated consecutively with frameless SRS as primary treatment at University of Rome Sapienza Sant'Andrea Hospital between October 2008 and April 2010 and followed prospectively were involved in the study. A commercial stereotactic mask fixation system (BrainLab) was used for patient immobilization. A computerized tomography (CT) scan obtained immediately before SRS was used to evaluate the accuracy of patient repositioning in the mask by comparing the isocenter position to the isocenter position established in the planning CT. Deviations of isocenter coordinates in each direction and 3D displacement were calculated. Overall survival, brain control, and local control were estimated using the Kaplan-Meier method calculated from the time of SRS.</p> <p>Results</p> <p>The mean measured isocenter displacements were 0.12 mm (SD 0.35 mm) in the lateral direction, 0.2 mm (SD 0.4 mm) in the anteroposterior, and 0.4 mm (SD 0.6 mm) in craniocaudal direction. The maximum displacement of 2.1 mm was seen in craniocaudal direction. The mean 3D displacement was 0.5 mm (SD 0.7 mm), being maximum 2.9 mm. The median survival was 15.5 months, and 1-year and 2-year survival rates were 58% and 24%, respectively. Nine patients recurred locally after SRS, with 1-year and 2-year local control rates of 91% and 82%, respectively. Stable extracranial disease (P = 0.001) and KPS > 70 (P = 0.01) were independent predictors of survival.</p> <p>Conclusions</p> <p>Frameless SRS is an effective treatment in the management of patients with brain metastases. The presented non-invasive mask-based fixation stereotactic system is associated with a high degree of patient repositioning accuracy; however, a careful evaluation is essential since occasional errors up to 3 mm may occur.</p
Ibudilast, a Pharmacologic Phosphodiesterase Inhibitor, Prevents Human Immunodeficiency Virus-1 Tat-Mediated Activation of Microglial Cells
Human Immunodeficiency Virus-1 (HIV-1)-associated neurocognitive disorders (HAND) occur, in part, due to the inflammatory response to viral proteins, such as the HIV-1 transactivator of transcription (Tat), in the central nervous system (CNS). Given the need for novel adjunctive therapies for HAND, we hypothesized that ibudilast would inhibit Tat-induced excess production of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNFα) in microglial cells. Ibudilast is a non-selective cyclic AMP phosphodiesterase inhibitor that has recently shown promise as a treatment for neuropathic pain via its ability to attenuate glial cell activation. Accordingly, here we demonstrate that pre-treatment of both human and mouse microglial cells with increasing doses of ibudilast inhibited Tat-induced synthesis of TNFα by microglial cells in a manner dependent on serine/threonine protein phosphatase activity. Ibudilast had no effect on Tat-induced p38 MAP kinase activation, and blockade of adenosine A2A receptor activation did not reverse ibudilast's inhibition of Tat-induced TNFα production. Interestingly, ibudilast reduced Tat-mediated transcription of TNFα, via modulation of nuclear factor-kappa B (NF-κB) signaling, as shown by transcriptional activity of NF-κB and analysis of inhibitor of kappa B alpha (IκBα) stability. Together, our findings shed light on the mechanism of ibudilast's inhibition of Tat-induced TNFα production in microglial cells and may implicate ibudilast as a potential novel adjunctive therapy for the management of HAND
- …
