187 research outputs found

    Rosiglitazone as an option for patients with acromegaly: a case series

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>In the patient with acromegaly, pituitary surgery is the therapeutic standard. Despite undergoing surgery, a significant number of patients with acromegaly continue to have uncontrolled growth hormone secretion. These patients require other treatments such as external irradiation and/or drug therapy.</p> <p>Case presentation</p> <p>We present the clinical and laboratory responses to six months of treatment with rosiglitazone in four cases. In all four cases, the patients had persistent growth hormone overproduction despite previous surgical treatment and other conventional therapy. Case 1 is a 57-year-old Caucasian woman, case 2 is a 51-year-old Hispanic man, case 3 is a 32-year-old Hispanic woman, and case 4 is a 36-year-old Hispanic man. In three of these patients, basal and nadir growth hormone and insulin-like growth factor 1 levels were significantly decreased (<it>P </it>< 0.05 and <it>P </it>< 0.01, respectively).</p> <p>Conclusion</p> <p>Rosiglitazone could be a treatment option in select patients with acromegaly.</p

    Pituitary tumor-transforming gene expression is a prognostic marker for tumor recurrence in squamous cell carcinoma of the head and neck

    Get PDF
    BACKGROUND: The proto-oncogene pituitary tumor-transforming gene (PTTG) has been shown to be abundantly overexpressed in a large variety of neoplasms likely promoting neo-vascularization and tumor invasiveness. In this study, we investigated a potential role for PTTG mRNA expression as a marker to evaluate the future clinical outcome of patients diagnosed with primary cancer of the head and neck. METHODS: Tumor samples derived from primary tumors of 89 patients suffering from a squamous cell carcinoma were analyzed for PTTG mRNA-expression and compared to corresponding unaffected tissue. Expression levels were correlated to standard clinico-pathological parameters based on a five year observation period. RESULTS: In almost all 89 tumor samples PTTG was found to be overexpressed (median fold increase: 2.1) when compared to the unaffected tissue specimens derived from the same patient. The nodal stage correlated with PTTG transcript levels with significant differences between pN0 (median expression: 1.32) and pN+ (median expression: 2.12; P = 0.016). In patients who developed a tumor recurrence we detected a significantly higher PTTG expression in primary tumors (median expression: 2.63) when compared to patients who did not develop a tumor recurrence (median expression: 1.29; P = 0.009). Since the median expression of PTTG in patients with tumor stage T1/2N0M0 that received surgery alone without tumor recurrence was 0.94 versus 3.82 in patients suffering from a tumor recurrence (P = 0.006), PTTG expression might provide a feasible mean of predicting tumor recurrence. CONCLUSION: Elevated PTTG transcript levels might be used as a prognostic biomarker for future clinical outcome (i.e. recurrence) in primary squamous cell carcinomas of the head and neck, especially in early stages of tumor development

    Systemic therapy of Cushing’s syndrome

    Get PDF
    Cushing’s disease (CD) in a stricter sense derives from pathologic adrenocorticotropic hormone (ACTH) secretion usually triggered by micro- or macroadenoma of the pituitary gland. It is, thus, a form of secondary hypercortisolism. In contrast, Cushing’s syndrome (CS) describes the complexity of clinical consequences triggered by excessive cortisol blood levels over extended periods of time irrespective of their origin. CS is a rare disease according to the European orphan regulation affecting not more than 5/10,000 persons in Europe. CD most commonly affects adults aged 20–50 years with a marked female preponderance (1:5 ratio of male vs. female). Patient presentation and clinical symptoms substantially vary depending on duration and plasma levels of cortisol. In 80% of cases CS is ACTH-dependent and in 20% of cases it is ACTH-independent, respectively. Endogenous CS usually is a result of a pituitary tumor. Clinical manifestation of CS, apart from corticotropin-releasing hormone (CRH-), ACTH-, and cortisol-producing (malign and benign) tumors may also be by exogenous glucocorticoid intake. Diagnosis of hypercortisolism (irrespective of its origin) comprises the following: Complete blood count including serum electrolytes, blood sugar etc., urinary free cortisol (UFC) from 24 h-urine sampling and circadian profile of plasma cortisol, plasma ACTH, dehydroepiandrosterone, testosterone itself, and urine steroid profile, Low-Dose-Dexamethasone-Test, High-Dose-Dexamethasone-Test, after endocrine diagnostic tests: magnetic resonance imaging (MRI), ultra-sound, computer tomography (CT) and other localization diagnostics. First-line therapy is trans-sphenoidal surgery (TSS) of the pituitary adenoma (in case of ACTH-producing tumors). In patients not amenable for surgery radiotherapy remains an option. Pharmacological therapy applies when these two options are not amenable or refused. In cases when pharmacological therapy becomes necessary, Pasireotide should be used in first-line in CD. CS patients are at an overall 4-fold higher mortality rate than age- and gender-matched subjects in the general population. The following article describes the most prominent substances used for clinical management of CS and gives a systematic overview of safety profiles, pharmacokinetic (PK)-parameters, and regulatory framework

    Are diet–prostate cancer associations mediated by the IGF axis? A cross-sectional analysis of diet, IGF-I and IGFBP-3 in healthy middle-aged men

    Get PDF
    We examined the association of diet with insulin-like growth factors (IGF) in 344 disease-free men. Raised levels of IGF-I and/or its molar ratio with IGFBP-3 were associated with higher intakes of milk, dairy products, calcium, carbohydrate and polyunsaturated fat; lower levels with high vegetable consumption, particularly tomatoes. These patterns support the possibility that IGFs may mediate some diet-cancer associations

    Thiazolidinediones enhance vascular endothelial growth factor expression and induce cell growth inhibition in non-small-cell lung cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is known that thiazolidinediones are involved in regulating the expression of various genes, including the vascular endothelial growth factor (VEGF) gene via peroxisome proliferator-activated receptor γ (PPARγ); VEGF is a prognostic biomarker for non-small-cell lung cancer (NSCLC).</p> <p>Methods</p> <p>In this study, we investigated the effects of troglitazone and ciglitazone on the mRNA expression of VEGF and its receptors in human NSCLC cell lines, RERF-LC-AI, SK-MES-1, PC-14, and A549. These mRNA expressions were evaluated by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis. We also studied the effect of Je-11, a VEGF inhibitor, on the growth of these cells.</p> <p>Results</p> <p>In NSCLC cells, thiazolidinediones increased the mRNA expression of VEGF and neuropilin-1, but not that of other receptors such as fms-like tyrosine kinase and kinase insert domain receptor-1. Furthermore, the PPARγ antagonist GW9662 completely reversed this thiazolidinedione-induced increase in VEGF expression. Furthermore, the addition of VEGF inhibitors into the culture medium resulted in the reversal of thiazolidinedione-induced growth inhibition.</p> <p>Conclusions</p> <p>Our results indicated that thiazolidinediones enhance VEGF and neuropilin-1 expression and induce the inhibition of cell growth. We propose the existence of a pathway for arresting cell growth that involves the interaction of thiazolidinedione-induced VEGF and neuropilin-1 in NSCLC.</p

    Mutation analysis of aryl hydrocarbon receptor interacting protein (AIP) gene in colorectal, breast, and prostate cancers

    Get PDF
    Germline mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene were recently identified in individuals with pituitary adenoma predisposition (PAP). These patients have prolactin (PRL) or growth hormone (GH) oversecreting pituitary adenomas, the latter exhibiting acromegaly or gigantism. Loss-of-heterozygosity (LOH) analysis revealed that AIP is lost in PAP tumours, suggesting that it acts as a tumour-suppressor gene. Aryl hydrocarbon receptor interacting protein is involved in several pathways, but it is best characterised as a cytoplasmic partner of the aryl hydrocarbon receptor (AHR). To examine the possible role of AIP in the genesis of common cancers, we performed somatic mutation screening in a series of 373 colorectal cancers (CRCs), 82 breast cancers, and 44 prostate tumour samples. A missense R16H (47G>A) change was identified in two CRC samples, as well as in the respective normal tissues, but was absent in 209 healthy controls. The remaining findings were silent, previously unreported, changes of the coding, non-coding, or untranslated regions of AIP. These results suggest that somatic AIP mutations are not common in CRC, breast, and prostate cancers

    The pituitary tumor transforming gene 1 (PTTG-1): An immunological target for multiple myeloma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple Myeloma is a cancer of B plasma cells, which produce non-specific antibodies and proliferate uncontrolled. Due to the potential relapse and non-specificity of current treatments, immunotherapy promises to be more specific and may induce long-term immunity in patients. The pituitary tumor transforming gene 1 (PTTG-1) has been shown to be a novel oncogene, expressed in the testis, thymus, colon, lung and placenta (undetectable in most other tissues). Furthermore, it is over expressed in many tumors such as the pituitary adenoma, breast, gastrointestinal cancers, leukemia, lymphoma, and lung cancer and it seems to be associated with tumorigenesis, angiogenesis and cancer progression. The purpose was to investigate the presence/rate of expression of PTTG-1 in multiple myeloma patients.</p> <p>Methods</p> <p>We analyzed the PTTG-1 expression at the transcriptional and the protein level, by PCR, immunocytochemical methods, Dot-blot and ELISA performed on patient's sera in 19 multiple myeloma patients, 6 different multiple myeloma cell lines and in normal human tissue.</p> <p>Results</p> <p>We did not find PTTG-1 presence in the normal human tissue panel, but PTTG-1 mRNA was detectable in 12 of the 19 patients, giving evidence of a 63% rate of expression (data confirmed by ELISA). Four of the 6 investigated cell lines (66.6%) were positive for PTTG-1. Investigations of protein expression gave evidence of 26.3% cytoplasmic expression and 16% surface expression in the plasma cells of multiple myeloma patients. Protein presence was also confirmed by Dot-blot in both cell lines and patients.</p> <p>Conclusion</p> <p>We established PTTG-1's presence at both the transcriptional and protein levels. These data suggest that PTTG-1 is aberrantly expressed in multiple myeloma plasma cells, is highly immunogenic and is a suitable target for immunotherapy of multiple myeloma.</p
    corecore