44 research outputs found

    Hybrid EEG-fNIRS asynchronous brain-computer interface for multiple motor tasks

    Get PDF
    Non-invasive Brain-Computer Interfaces (BCI) have demonstrated great promise for neuroprosthetics and assistive devices. Here we aim to investigate methods to combine Electroencephalography (EEG) and functional Near-Infrared Spectroscopy (fNIRS) in an asynchronous Sensory Motor rhythm (SMR)-based BCI. We attempted to classify 4 different executed movements, namely, Right-Arm—Left-Arm—Right-Hand—Left-Hand tasks. Previous studies demonstrated the benefit of EEG-fNIRS combination. However, since normally fNIRS hemodynamic response shows a long delay, we investigated new features, involving slope indicators, in order to immediately detect changes in the signals. Moreover, Common Spatial Patterns (CSPs) have been applied to both EEG and fNIRS signals. 15 healthy subjects took part in the experiments and since 25 trials per class were available, CSPs have been regularized with information from the entire population of participants and optimized using genetic algorithms. The different features have been compared in terms of performance and the dynamic accuracy over trials shows that the introduced methods diminish the fNIRS delay in the detection of changes

    Modulation of Brain Activity during Action Observation: Influence of Perspective, Transitivity and Meaningfulness

    Get PDF
    The coupling process between observed and performed actions is thought to be performed by a fronto-parietal perception-action system including regions of the inferior frontal gyrus and the inferior parietal lobule. When investigating the influence of the movements' characteristics on this process, most research on action observation has focused on only one particular variable even though the type of movements we observe can vary on several levels. By manipulating the visual perspective, transitivity and meaningfulness of observed movements in a functional magnetic resonance imaging study we aimed at investigating how the type of movements and the visual perspective can modulate brain activity during action observation in healthy individuals. Importantly, we used an active observation task where participants had to subsequently execute or imagine the observed movements. Our results show that the fronto-parietal regions of the perception action system were mostly recruited during the observation of meaningless actions while visual perspective had little influence on the activity within the perception-action system. Simultaneous investigation of several sources of modulation during active action observation is probably an approach that could lead to a greater ecological comprehension of this important sensorimotor process

    Attention modulates motor system activation during action observation: evidence for inhibitory rebound

    Get PDF
    Perceiving another individual’s actions activates the human motor system. We investigated whether this effect is stronger when the observed action is relevant to the observer’s task. The mu rhythm (oscillatory activity in the 8- to 13-Hz band over sensorimotor cortex) was measured while participants watched videos of grasping movements. In one of two conditions, the participants had to later report how many times they had seen a certain kind of grasp. In the other condition, they viewed the identical videos but had to later report how many times they had seen a certain colour change. The colour change and the grasp always occurred simultaneously. Results show mu rhythm attenuation when watching the videos relative to baseline. This attenuation was stronger when participants later reported the grasp rather than the colour, suggesting that the motor system is more strongly activated when the observed grasping actions were relevant to the observer’s task. Moreover, when the graspable object disappeared after the offset of the video, there was subsequent mu rhythm enhancement, reflecting a post-stimulus inhibitory rebound. This enhancement was again stronger when making judgments about the grasp than the colour, suggesting that the stronger activation is followed by a stronger inhibitory rebound

    The relative emission from chromospheres and coronae: dependence on spectral type and age

    No full text
    Extreme-ultraviolet and X-ray emission from stellar coronae drives mass loss from exoplanet atmospheres, and ultraviolet emission from stellar chromospheres drives photochemistry in exoplanet atmospheres. Comparisons of the spectral energy distributions of host stars are, therefore, essential for understanding the evolution and habitability of exoplanets. The large number of stars observed with the MUSCLES, Mega-MUSCLES, and other recent Hubble Space Telescope observing programs has provided for the first time a large sample (79 stars) of reconstructed Lyα fluxes that we compare with X-ray fluxes to identify significant patterns in the relative emission from these two atmospheric regions as a function of stellar age and effective temperature. We find that as stars age on the main sequence, the emissions from their chromospheres and coronae follow a pattern in response to the amount of magnetic heating in these atmospheric layers. A single trend-line slope describes the pattern of X-ray versus Lyα emission for G and K dwarfs, but the different trend lines for M dwarf stars show that the Lyα fluxes of M stars are significantly smaller than those of warmer stars with the same X-ray flux. The X-ray and Lyα luminosities divided by the stellar bolometric luminosities show different patterns depending on stellar age. The L(Lyα)/L(bol) ratios increase smoothly to cooler stars of all ages, but the L(X)/L(bol) ratios show different trends. For older stars, the increase in coronal emission with decreasing Teff{T}_{\mathrm{eff}} is much steeper than that of chromospheric emission. We suggest a fundamental link between atmospheric properties and trend lines relating coronal and chromospheric heating

    The muscles treasury survey. I. Motivation and overview

    No full text
    Ground- and space-based planet searches employing radial velocity techniques and transit photometry have detected thousands of planet-hosting stars in the Milky Way. With so many planets discovered, the next step toward identifying potentially habitable planets is atmospheric characterization. While the Sun–Earth system provides a good framework for understanding the atmospheric chemistry of Earth-like planets around solar-type stars, the observational and theoretical constraints on the atmospheres of rocky planets in the habitable zones (HZs) around low-mass stars (K and M dwarfs) are relatively few. The chemistry of these atmospheres is controlled by the shape and absolute flux of the stellar spectral energy distribution (SED), however, flux distributions of relatively inactive low-mass stars are poorly understood at present. To address this issue, we have executed a panchromatic (X-ray to mid-IR) study of the SEDs of 11 nearby planet-hosting stars, the Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanetary Systems (MUSCLES) Treasury Survey. The MUSCLES program consists visible observations from Hubble and ground-based observatories. Infrared and astrophysically inaccessible wavelengths (EUV and Lyα) are reconstructed using stellar model spectra to fill in gaps in the observational data. In this overview and the companion papers describing the MUSCLES survey, we show that energetic radiation (X-ray and ultraviolet) is present from magnetically active stellar atmospheres at all times for stars as late as M6. The emission line luminosities of C iv and Mg ii are strongly correlated with band-integrated luminosities and we present empirical relations that can be used to estimate broadband FUV and XUV (≡X-ray + EUV) fluxes from individual stellar emission line measurements. We find that while the slope of the SED, FUV/NUV, increases by approximately two orders of magnitude form early K to late M dwarfs (≈0.01–1), the absolute FUV and XUV flux levels at their corresponding HZ distances are constant to within factors of a few, spanning the range 10–70 erg cm−2 s−1 in the HZ. Despite the lack of strong stellar activity indicators in their optical spectra, several of the M dwarfs in our sample show spectacular UV flare emission in their light curves. We present an example with flare/quiescent ultraviolet flux ratios of the order of 100:1 where the transition region energy output during the flare is comparable to the total quiescent luminosity of the star Eflare(UV) ~ 0.3 L*Δt (Δt = 1 s). Finally, we interpret enhanced L(line)/LBol ratios for C iv and N v as tentative observational evidence for the interaction of planets with large planetary mass-to-orbital distance ratios (Mplan/aplan) with the transition regions of their host stars. </p

    Observation of a finger or an object movement primes imitative responses differentially

    No full text
    Behavioural advantages for imitated human finger movements over movements instructed by other visual stimuli are attributed to an 'action observation-execution matching' (AOEM) mechanism. Here, we demonstrate that priming/exogenous cueing with a biological finger movement stimulus (S1) produces specific congruency effects in reaction times (RTs) of imitative responses to a target movement (S2) at defined stimulus onset asynchronies (SOAs). When contrasted with a moving object at an SOA of 533ms, only a biological movement is capable of inducing an effect reminiscent of 'inhibition of return' (IOR), i.e. a significant advantage for imitation of a subsequent incongruent as compared to a congruent movement. When responses are primed by a biological movement at SOAs of 533 and 1200 ms, inhibition of congruent or facilitation of incongruent responses, respectively, is stronger as compared to priming by a moving object. This pattern does not depend on whether S2 presents a finger movement or a moving object, thus effects can not be attributed to visual similarity between S1 and S2. Instead, we propose that, whereas both priming by a biological movement and a moving object induces processes of spatial orienting, during observation of biological movement AOEM also comes into play eliciting an immediate imitative response tendency. As an overt response to S1 is inadequate in the setting tested here, the response tendency is inhibited which, in turn, modulates congruency effects

    Estimating the ultraviolet emission of M dwarfs with exoplanets from Ca II and H

    No full text
    M dwarf stars are excellent candidates around which to search for exoplanets, including temperate, Earth-sized planets. To evaluate the photochemistry of the planetary atmosphere, it is essential to characterize the UV spectral energy distribution of the planet's host star. This wavelength regime is important because molecules in the planetary atmosphere such as oxygen and ozone have highly wavelength-dependent absorption cross sections that peak in the UV (900–3200 Å). We seek to provide a broadly applicable method of estimating the UV emission of an M dwarf, without direct UV data, by identifying a relationship between noncontemporaneous optical and UV observations. Our work uses the largest sample of M dwarf star far- and near-UV observations yet assembled. We evaluate three commonly observed optical chromospheric activity indices—Hα equivalent widths and log10 LHα/Lbol, and the Mount Wilson Ca II H&K S and R'HK indices—using optical spectra from the HARPS, UVES, and HIRES archives and new HIRES spectra. Archival and new Hubble Space Telescope COS and STIS spectra are used to measure line fluxes for the brightest chromospheric and transition region emission lines between 1200 and 2800 Å. Our results show a correlation between UV emission-line luminosity normalized to the stellar bolometric luminosity and Ca II R'HK with standard deviations of 0.31–0.61 dex (factors of ~2–4) about the best-fit lines. We also find correlations between normalized UV line luminosity and Hα log10 LHα/Lbol and the S index. These relationships allow one to estimate the average UV emission from M0 to M9 dwarfs when UV data are not available
    corecore