295 research outputs found

    Mineralogical characteristics influence the structure and pozzolanic reactivity of thermally and mechano-chemically activated meta-kaolinites

    Get PDF
    \ua9 2024 The Royal Society of Chemistry. Increasing early age reactivity of cement replacements is a barrier to reducing the embodied carbon of blended Portland cements. Mechano-chemical activation is an emerging alternative to conventional thermal activation for clays, which can accelerate early age reactivity. Knowledge gaps on the structure and reactivity of mechano-chemically activated kaolinitic clays include the influence of Fe-bearing phases and the mineralogical characteristics of kaolinites from different sources. This study evaluated the effectiveness of mechano-chemical vs. thermal activation for an Fe-rich clay containing disordered kaolinite and 24 wt% goethite, and a low-Fe clay containing highly ordered kaolinite. In the Fe-rich clay, mechano-chemical activation simultaneously caused dehydroxylation of kaolinite to form meta-kaolinite, and dehydration of goethite to form hematite. Agglomerates of intermixed meta-kaolinite and goethite/hematite nanoparticles were shown to have similar Al and Si environments after thermal or mechano-chemical activation (as determined by STEM-EDX, 27Al and 29Si MAS nuclear magnetic resonance and electron energy loss spectroscopy). Mechano-chemical activation enhanced early age (<12 hours) reactivity for both clays. Evaluating early age reactivity by unit mass of anhydrous meta-kaolinite explains how surface-adsorbed moisture results in underperformance of mechano-chemical activation at later ageing times. External surface area alone does not predict reactivity acceleration well - edge : basal surface area of meta-kaolinite is proposed as a more relevant factor that governs early age performance of mechano-chemically activated clays. The structure-property-performance relations of mechano-chemically activated meta-kaolinites are explained through interactions of kaolinites\u27 intrinsic mineralogical characteristics (i.e. initial particle size, aspect ratio, structural order) and extrinsic processing effects (i.e. intensive milling on structural order and physical characteristics)

    Evaluation of the potential improvement in the environmental footprint of geopolymers using waste-derived activators

    Get PDF
    Geopolymers produced from an aluminosilicate precursor and an alkaline activating solution have emerged as low carbon alternative binders which can substitute for Portland cement (PC) in many applications. The presence of soluble silicate in the activating solution of a geopolymer is known to yield a denser and more compact material with higher mechanical strength compared to hydroxide-activated geopolymers. However, these silicate solutions are the most expensive component of geopolymer cements, as well as the highest contributors to their environmental impacts in most life cycle categories. Geopolymers are widely accepted as a more environmental friendly material due to their claimed lower CO2 emissions due to their synthesis from industrial by-products or wastes, as well the low energy demand during their production. However, the use of alkali-silicate activators can significantly increase other environmental impacts, leading to controversies regarding whether geopolymers can really be considered as a more sustainable material. Thus, this study evaluates the life cycle impacts of a geopolymer produced from a kaolin sludge residue from the Brazilian mining industry. Alkaline solutions derived from sodium hydroxide solutions and two different soluble silica sources were used as activators: a commercial sodium silicate (waterglass), and chemically modified rice husk ash (RHA). The processes which contribute the most to the life cycle impacts of geopolymers are thermal curing, waterglass production, and sodium hydroxide production. The use of RHA-derived sodium silicate may reduce environmental impacts by more than 60% in 6 of the 9 categories assessed, indicating that this is a favourable alternative where RHA is locally available. Although the binders evaluated here have differences in mechanical properties, those using RHA-derived activators exhibit impacts lower than PC for 4 of the 8 categories evaluated, and a reduction of more than 70% in global warming potential. RHA-based activators are identified as a promising alternative for impact reduction in geopolymer production, and more detailed assessments of the performance and reactivity of these activators should be conducted

    Hidden Orbital Order in URu2Si2URu_{2}Si_{2}

    Full text link
    When matter is cooled from high temperatures, collective instabilities develop amongst its constituent particles that lead to new kinds of order. An anomaly in the specific heat is a classic signature of this phenomenon. Usually the associated order is easily identified, but sometimes its nature remains elusive. The heavy fermion metal URu2Si2URu_2Si_2 is one such example, where the order responsible for the sharp specific heat anomaly at T0=17KT_0=17 K has remained unidentified despite more than seventeen years of effort. In URu2Si2URu_{2}Si_{2}, the coexistence of large electron-electron repulsion and antiferromagnetic fluctuations in URu2Si2URu_2Si_2 leads to an almost incompressible heavy electron fluid, where anisotropically paired quasiparticle states are energetically favored. In this paper we use these insights to develop a detailed proposal for the hidden order in URu2Si2URu_2Si_2. We show that incommensurate orbital antiferromagnetism, associated with circulating currents between the uranium ions, can account for the local fields and entropy loss observed at the 17K17 K transition; furthermore we make detailed predictions for neutron scattering measurements

    Transcriptomics reveal an integrative role for maternal thyroid hormones during zebrafish embryogenesis

    Get PDF
    Thyroid hormones (THs) are essential for embryonic brain development but the genetic mechanisms involved in the action of maternal THs (MTHs) are still largely unknown. As the basis for understanding the underlying genetic mechanisms of MTHs regulation we used an established zebrafish monocarboxylic acid transporter 8 (MCT8) knock-down model and characterised the transcriptome in 25hpf zebrafish embryos. Subsequent mapping of differentially expressed genes using Reactome pathway analysis together with in situ expression analysis and immunohistochemistry revealed the genetic networks and cells under MTHs regulation during zebrafish embryogenesis. We found 4,343 differentially expressed genes and the Reactome pathway analysis revealed that TH is involved in 1681 of these pathways. MTHs regulated the expression of core developmental pathways, such as NOTCH and WNT in a cell specific context. The cellular distribution of neural MTH-target genes demonstrated their cell specific action on neural stem cells and differentiated neuron classes. Taken together our data show that MTHs have a role in zebrafish neurogenesis and suggest they may be involved in cross talk between key pathways in neural development. Given that the observed MCT8 zebrafish knockdown phenotype resembles the symptoms in human patients with Allan-Herndon-Dudley syndrome our data open a window into understanding the genetics of this human congenital condition.Portuguese Fundacao para Ciencia e Tecnologia (FCT) [PTDC/EXPL/MARBIO/0430/2013]; CCMAR FCT Plurianual financing [UID/Multi/04326/2013]; FCT [SFRH/BD/111226/2015, SFRH/BD/108842/2015, SFRH/BPD/89889/2012]; FCT-IF Starting Grant [IF/01274/2014]info:eu-repo/semantics/publishedVersio

    Paternal obesity is associated with IGF2 hypomethylation in newborns: results from a Newborn Epigenetics Study (NEST) cohort

    Get PDF
    Data from epidemiological and animal model studies suggest that nutrition during pregnancy may affect the health status of subsequent generations. These transgenerational effects are now being explained by disruptions at the level of the epigenetic machinery. Besides in vitro environmental exposures, the possible impact on the reprogramming of methylation profiles at imprinted genes at a much earlier time point, such as during spermatogenesis or oogenesis, has not previously been considered. In this study, our aim was to determine associations between preconceptional obesity and DNA methylation profiles in the offspring, particularly at the differentially methylated regions (DMRs) of the imprinted Insulin-like Growth Factor 2 (IGF2) gene

    ADP-Ribosylation Factor 6 Expression and Activation Are Reduced in Myometrium in Complicated Pregnancies

    Get PDF
    ARF6 (ADP-ribosylation factor 6) small GTP binding protein plays critical roles in actin cytoskeleton rearrangements and membrane trafficking, including internalisation of G protein coupled receptors (GPCR). ARF6 operates by cycling between GDP-bound (inactive) and GTP-bound (active) forms and is a potential regulator of GPCR-mediated uterine activity during pregnancy and labour. ARF6 contains very low intrinsic GTP binding activity and depends on GEFs (guanine nucleotide exchange factors) such as CYTH3 (cytohesin 3) to bind GTP. ARF6 and CYTH3 were originally cloned from human placenta, but there is no information on their expression in other reproductive tissues.The expression of ARF6, ARF1, and CYTH1-4 was investigated by measuring mRNA (using RT-PCR) and protein levels (using immunoblotting) in samples of myometrium obtained from non-pregnant women, and women with normal pregnancies, before or after the spontaneous onset of labour. We also analysed myometrial samples from women with spontaneous preterm labour and from women with complicated pregnancies requiring emergency preterm delivery. The GST)-effector pull down assay was used to study the presence of active ARF6 and ARF1 in all myometrial extracts.ARF6, ARF1 and CYTH3 but not CYTH1, CYTH2 and CYTH4 were expressed in all samples and the levels did not change with pregnancy or labour. However, ARF6 and CYTH3 but not ARF1 levels were significantly reduced in complicated pregnancies. The alterations in the expression of ARF6 and its GEF in human myometrium indicate a potential involvement of this signalling system in modulating the response of myometrial smooth muscle in complicated pregnancies. The levels of ARF6-GTP or ARF1-GTP did not change with pregnancy or labour but ARF6-GTP levels were significantly decreased in women with severe complications of pregnancy.We have demonstrated a functional ARF6 system in human myometrium and a correlation between ARF6 level and activity in uterine and abnormal pregnancy

    Topology by Design in Magnetic nano-Materials: Artificial Spin Ice

    Full text link
    Artificial Spin Ices are two dimensional arrays of magnetic, interacting nano-structures whose geometry can be chosen at will, and whose elementary degrees of freedom can be characterized directly. They were introduced at first to study frustration in a controllable setting, to mimic the behavior of spin ice rare earth pyrochlores, but at more useful temperature and field ranges and with direct characterization, and to provide practical implementation to celebrated, exactly solvable models of statistical mechanics previously devised to gain an understanding of degenerate ensembles with residual entropy. With the evolution of nano--fabrication and of experimental protocols it is now possible to characterize the material in real-time, real-space, and to realize virtually any geometry, for direct control over the collective dynamics. This has recently opened a path toward the deliberate design of novel, exotic states, not found in natural materials, and often characterized by topological properties. Without any pretense of exhaustiveness, we will provide an introduction to the material, the early works, and then, by reporting on more recent results, we will proceed to describe the new direction, which includes the design of desired topological states and their implications to kinetics.Comment: 29 pages, 13 figures, 116 references, Book Chapte

    Magnetism, FeS colloids, and Origins of Life

    Full text link
    A number of features of living systems: reversible interactions and weak bonds underlying motor-dynamics; gel-sol transitions; cellular connected fractal organization; asymmetry in interactions and organization; quantum coherent phenomena; to name some, can have a natural accounting via physicalphysical interactions, which we therefore seek to incorporate by expanding the horizons of `chemistry-only' approaches to the origins of life. It is suggested that the magnetic 'face' of the minerals from the inorganic world, recognized to have played a pivotal role in initiating Life, may throw light on some of these issues. A magnetic environment in the form of rocks in the Hadean Ocean could have enabled the accretion and therefore an ordered confinement of super-paramagnetic colloids within a structured phase. A moderate H-field can help magnetic nano-particles to not only overcome thermal fluctuations but also harness them. Such controlled dynamics brings in the possibility of accessing quantum effects, which together with frustrations in magnetic ordering and hysteresis (a natural mechanism for a primitive memory) could throw light on the birth of biological information which, as Abel argues, requires a combination of order and complexity. This scenario gains strength from observations of scale-free framboidal forms of the greigite mineral, with a magnetic basis of assembly. And greigite's metabolic potential plays a key role in the mound scenario of Russell and coworkers-an expansion of which is suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed Krishnaswami Alladi, Springer 201

    PTTG1 Attenuates Drug-Induced Cellular Senescence

    Get PDF
    As PTTG1 (pituitary tumor transforming gene) abundance correlates with adverse outcomes in cancer treatment, we determined mechanisms underlying this observation by assessing the role of PTTG1 in regulating cell response to anti-neoplastic drugs. HCT116 cells devoid of PTTG1 (PTTG1−/−) exhibited enhanced drug sensitivity as assessed by measuring BrdU incorporation in vitro. Apoptosis, mitosis catastrophe or DNA damage were not detected, but features of senescence were observed using low doses of doxorubicin and TSA. The number of drug-induced PTTG1−/− senescent cells increased ∼4 fold as compared to WT PTTG1-replete cells (p<0.001). p21, an important regulator of cell senescence, was induced ∼3 fold in HCT116 PTTG1−/− cells upon doxorubicin or Trichostatin A treatment. Binding of Sp1, p53 and p300 to the p21 promoter was enhanced in PTTG1−/− cells after treatment, suggesting transcriptional regulation of p21. p21 knock down abrogated the observed senescent effects of these drugs, indicating that PTTG1 likely suppresses p21 to regulate drug-induced senescence. PTTG1 also regulated SW620 colon cancer cells response to doxorubicin and TSA mediated by p21. Subcutaneously xenografted PTTG1−/− HCT116 cells developed smaller tumors and exhibited enhanced responses to doxorubicin. PTTG1−/− tumor tissue derived from excised tumors exhibited increased doxorubicin-induced senescence. As senescence is a determinant of cell responses to anti-neoplastic treatments, these findings suggest PTTG1 as a tumor cell marker to predict anti-neoplastic treatment outcomes

    Securin (hPTTG1) expression is regulated by β-catenin/TCF in human colorectal carcinoma

    Get PDF
    Overexpression of the transcriptional activator β-catenin, mostly owing to loss-of-function mutations of the adenomatous polyposis coli (APC) tumour suppressor gene, is crucial for the initiation and progression of human colorectal carcinogenesis. Securin is a regulator of chromosome separation and its overexpression has been shown to be involved in different tumour-promoting processes, like transformation, hyperproliferation and angiogenesis, and correlates with tumour cell invasion. However, the molecular mechanism leading to securin overexpression in human colorectal cancer is unknown. Here we show a correlated high expression of β-catenin and securin (hPTTG1) in colorectal adenomas and carcinomas and further demonstrate that securin is a target of β-catenin transcriptional activation. This implies that deregulation of the β-catenin/T-cell factor-signalling pathway leads to overexpression of securin in human colorectal cancer, which subsequently may contribute to tumour progression
    • …
    corecore