60 research outputs found

    Simulation-based analysis of micro-robots swimming at the center and near the wall of circular mini-channels

    Get PDF
    Swimming micro robots have great potential in biomedical applications such as targeted drug delivery, medical diagnosis, and destroying blood clots in arteries. Inspired by swimming micro organisms, micro robots can move in biofluids with helical tails attached to their bodies. In order to design and navigate micro robots, hydrodynamic characteristics of the flow field must be understood well. This work presents computational fluid dynamics (CFD) modeling and analysis of the flow due to the motion of micro robots that consist of magnetic heads and helical tails inside fluid-filled channels akin to bodily conduits; special emphasis is on the effects of the radial position of the robot. Time-averaged velocities, forces, torques, and efficiency of the micro robots placed in the channels are analyzed as functions of rotation frequency, helical pitch (wavelength) and helical radius (amplitude) of the tail. Results indicate that robots move faster and more efficiently near the wall than at the center of the channel. Forces acting on micro robots are asymmetrical due to the chirality of the robot’s tail and its motion. Moreover, robots placed near the wall have a different flow pattern around the head when compared to in-center and unbounded swimmers. According to simulation results, time-averaged for-ward velocity of the robot agrees well with the experimental values measured previously for a robot with almost the same dimensions

    Oscillatory surface rheotaxis of swimming E. coli bacteria

    Full text link
    Bacterial contamination of biological conducts, catheters or water resources is a major threat to public health and can be amplified by the ability of bacteria to swim upstream. The mechanisms of this rheotaxis, the reorientation with respect to flow gradients, often in complex and confined environments, are still poorly understood. Here, we follow individual E. coli bacteria swimming at surfaces under shear flow with two complementary experimental assays, based on 3D Lagrangian tracking and fluorescent flagellar labelling and we develop a theoretical model for their rheotactic motion. Three transitions are identified with increasing shear rate: Above a first critical shear rate, bacteria shift to swimming upstream. After a second threshold, we report the discovery of an oscillatory rheotaxis. Beyond a third transition, we further observe coexistence of rheotaxis along the positive and negative vorticity directions. A full theoretical analysis explains these regimes and predicts the corresponding critical shear rates. The predicted transitions as well as the oscillation dynamics are in good agreement with experimental observations. Our results shed new light on bacterial transport and reveal new strategies for contamination prevention.Comment: 12 pages, 5 figure

    Pressure is not a state function for generic active fluids

    Get PDF
    Pressure is the mechanical force per unit area that a confined system exerts on its container. In thermal equilibrium, it depends only on bulk properties (density, temperature, etc.) through an equation of state. Here we show that in a wide class of active systems the pressure depends on the precise interactions between the active particles and the confining walls. In general, therefore, active fluids have no equation of state, their mechanical pressures exhibit anomalous properties that defy the familiar thermodynamic reasoning that holds in equilibrium. The pressure remains a function of state, however, in some specific and well-studied active models that tacitly restrict the character of the particle-wall and/or particle-particle interactions.Comment: 8 pages + 9 SI pages, Nature Physics (2015

    Neighborhood built environment and physical activity of Japanese older adults: results from the Aichi Gerontological Evaluation Study (AGES)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although many studies have reported the association between neighborhood built environment (BE) and physical activity (PA), less is known about the associations for older populations or in countries besides the US and Australia. The aim of this paper is to examine the associations for older adult populations in Japan.</p> <p>Methods</p> <p>Our analyses were based on cross-sectional data from the Aichi Gerontological Evaluation Study (AGES), conducted in 2003. The respondents were older adults, aged 65 years or over (n = 9,414), from 8 municipalities across urban, suburban, and rural areas. The frequency of leisure time sports activity and total walking time were used as the outcome variables. Using geographic information systems (GIS), we measured residential density, street connectivity, number of local destinations, access to recreational spaces, and land slope of the respondents' neighborhoods, based on network distances with multiple radii (250 m, 500 m, 1,000 m). An ordinal logistic regression model was used to analyze the association between PA and BE measures.</p> <p>Results</p> <p>Population density and presence of parks or green spaces had positive associations with the frequency of sports activity, regardless of the selected buffer zone. The analysis of total walking time, however, showed only a few associations.</p> <p>Conclusions</p> <p>Our findings provide mixed support for the association between PA and the characteristics of BE measures, previously used in Western settings. Some characteristics of the neighborhood built environment may facilitate leisure time sports activity, but not increase the total walking time for Japanese older adults.</p

    Assessing the influence of the built environment on physical activity for utility and recreation in suburban metro Vancouver

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Physical inactivity and associated co-morbidities such as obesity and cardiovascular disease are estimated to have large societal costs. There is increasing interest in examining the role of the built environment in shaping patterns of physical activity. However, few studies have: (1) simultaneously examined physical activity for leisure and utility; (2) selected study areas with a range of built environment characteristics; and (3) assessed the built environment using high-resolution land use data.</p> <p>Methods</p> <p>Data on individuals used for this study are from a survey of 1602 adults in selected sites across suburban Metro Vancouver. Four types of physical activity were assessed: walking to work/school, walking for errands, walking for leisure and moderate physical activity for exercise. The built environment was assessed by constructing one-kilometre road network buffers around each respondent's postal code. Measures of the built environment include terciles of recreational and park land, residential land, institutional land, commercial land and land use mix.</p> <p>Results</p> <p>Logistic regression analyses showed that walking to work/school and moderate physical activity were not associated with any built environment measure. Living in areas with lower land use mix, lower commercial and lower recreational land increased the odds of low levels of walking for errands. Individuals living in the lower third of land use mix and institutional land were more likely to report low levels of walking for leisure.</p> <p>Conclusions</p> <p>These results suggest that walking for errands and leisure have a greater association with the built environment than other dimensions of physical activity.</p

    Upregulated Genes In Sporadic, Idiopathic Pulmonary Arterial Hypertension

    Get PDF
    BACKGROUND: To elucidate further the pathogenesis of sporadic, idiopathic pulmonary arterial hypertension (IPAH) and identify potential therapeutic avenues, differential gene expression in IPAH was examined by suppression subtractive hybridisation (SSH). METHODS: Peripheral lung samples were obtained immediately after removal from patients undergoing lung transplant for IPAH without familial disease, and control tissues consisted of similarly sampled pieces of donor lungs not utilised during transplantation. Pools of lung mRNA from IPAH cases containing plexiform lesions and normal donor lungs were used to generate the tester and driver cDNA libraries, respectively. A subtracted IPAH cDNA library was made by SSH. Clones isolated from this subtracted library were examined for up regulated expression in IPAH using dot blot arrays of positive colony PCR products using both pooled cDNA libraries as probes. Clones verified as being upregulated were sequenced. For two genes the increase in expression was verified by northern blotting and data analysed using Student's unpaired two-tailed t-test. RESULTS: We present preliminary findings concerning candidate genes upregulated in IPAH. Twenty-seven upregulated genes were identified out of 192 clones examined. Upregulation in individual cases of IPAH was shown by northern blot for tissue inhibitor of metalloproteinase-3 and decorin (P < 0.01) compared with the housekeeping gene glyceraldehydes-3-phosphate dehydrogenase. CONCLUSION: Four of the up regulated genes, magic roundabout, hevin, thrombomodulin and sucrose non-fermenting protein-related kinase-1 are expressed specifically by endothelial cells and one, muscleblind-1, by muscle cells, suggesting that they may be associated with plexiform lesions and hypertrophic arterial wall remodelling, respectively

    Physical Sensing of Surface Properties by Microswimmers - Directing Bacterial Motion via Wall Slip

    Get PDF
    Bacteria such as Escherichia coli swim along circular trajectories adjacent to surfaces. Thereby, the orientation (clockwise, counterclockwise) and the curvature depend on the surface properties. We employ mesoscale hydrodynamic simulations of a mechano-elastic model of E. coli, with a spherocylindrical body propelled by a bundle of rotating helical flagella, to study quantitatively the curvature of the appearing circular trajectories. We demonstrate that the cell is sensitive to nanoscale changes in the surface slip length. The results are employed to propose a novel approach to directing bacterial motion on striped surfaces with different slip lengths, which implies a transformation of the circular motion into a snaking motion along the stripe boundaries. The feasibility of this approach is demonstrated by a simulation of active Brownian rods, which also reveals a dependence of directional motion on the stripe width
    corecore