16 research outputs found

    Stability of p53 Homologs

    Get PDF
    <div><p>Most proteins have not evolved for maximal thermal stability. Some are only marginally stable, as for example, the DNA-binding domains of p53 and its homologs, whose kinetic and thermodynamic stabilities are strongly correlated. Here, we applied high-throughput methods using a real-time PCR thermocycler to study the stability of several full-length orthologs and paralogs of the p53 family of transcription factors, which have diverse functions, ranging from tumour suppression to control of developmental processes. From isothermal denaturation fluorimetry and differential scanning fluorimetry, we found that full-length proteins showed the same correlation between kinetic and thermodynamic stability as their isolated DNA-binding domains. The stabilities of the full-length p53 orthologs were marginal and correlated with the temperature of their organism, paralleling the stability of the isolated DNA-binding domains. Additionally, the paralogs p63 and p73 were significantly more stable and long-lived than p53. The short half-life of p53 orthologs and the greater persistence of the paralogs may be biologically relevant.</p> </div

    Arsenic Trioxide Reactivates Proteasome-Dependent Degradation of Mutant p53 Protein in Cancer Cells in Part via Enhanced Expression of Pirh2 E3 Ligase

    No full text
    The p53 gene is mutated in more than 50% of human tumors. Mutant p53 exerts an oncogenic function and is often highly expressed in cancer cells due to evasion of proteasome-dependent degradation. Thus, reactivating proteasome-dependent degradation of mutant p53 protein is an attractive strategy for cancer management. Previously, we found that arsenic trioxide (ATO), a drug for acute promyelocytic leukemia, degrades mutant p53 protein through a proteasome pathway. However, it remains unclear what is the E3 ligase that targets mutant p53 for degradation. In current study, we sought to identify an E3 ligase necessary for ATO-mediated degradation of mutant p53. We found that ATO induces expression of Pirh2 E3 ligase at the transcriptional level. We also found that knockdown of Pirh2 inhibits, whereas ectopic expression of Pirh2 enhances, ATO-induced degradation of mutant p53 protein. Furthermore, we found that Pirh2 E3 ligase physically interacts with and targets mutant p53 for polyubiquitination and subsequently proteasomal degradation. Interestingly, we found that ATO cooperates with HSP90 or HDAC inhibitor to promote mutant p53 degradation and growth suppression in tumor cells. Together, these data suggest that ATO promotes mutant p53 degradation in part via induction of the Pirh2-dependent proteasome pathway

    Functional interplay between MDM2, p63/p73 and mutant p53

    Get PDF
    Many cancers express mutant p53 proteins that have lost wild-type tumor suppressor activity and, in many cases, have acquired oncogenic functions that can contribute to tumor progression. These activities of mutant p53 reflect interactions with several other proteins, including the p53 family members p63 and p73. Mutations in p53 that affect protein conformation (such as R175H) show strong binding to p63 and p73, whereas p53 mutants that only mildly affect the conformation (such as R273H) bind less well. A previously described aggregation domain of mutant p53 is not required for p63 or p73 binding; indeed, mutations within this region lead to the acquisition of a mutant p53 phenotype—including a conformational shift, p63/p73 binding and the ability to promote invasion. The activity of wild-type p53 is regulated by an interaction with MDM2 and we have investigated the potential role of MDM2 in the mutant p53/p63/p73 interactions. Both mutant p53 and p73 bind MDM2 well, whereas p63 binds much more weakly. We found that MDM2 can inhibit p63 binding to p53R175H but enhances the weaker p53R273H/p73 interaction. These effects on the interactions are reflected in an ability of MDM2 to relieve the inhibition of p63 by p53R175H, but enhance the inhibition of p73 activity by p53R175H and R273H. We propose a model in which MDM2 competes with p63 for binding to p53R175H to restore p63 activity, but forms a trimeric complex with p73 and p53R273H to more strongly inhibit p73 function
    corecore