33 research outputs found

    Examining normative values using the Cambridge neuropsychological test automated battery and developmental traits of executive functions among elementary school-aged children in Japan

    Get PDF
    The Cambridge Neuropsychological Test Automated Battery (CANTAB) is a computerized and child-friendly neuropsychological assessment battery that includes subtests aimed at evaluating some aspects of executive functions. Using the CANTAB, this study aims to establish normative values based on the aspects of executive functions among school-aged children in Japan. The participants included 234 children (135 boys and 99 girls aged 6–12 years) enrolled in regular classes, without any clinical records of developmental disorders or educational support. The participants were grouped according to age (6–7, 8–9, and 10–12 years). Four CANTAB subtests, including spatial working memory (SWM) to assess spatial working memory, Stockings of Cambridge (SOC) to evaluate planning, intra/extradimensional set shift (IED) to evaluate attentional set shifting and flexibility, and stop signal task (SST) to evaluate inhibition, were administered to each participant. The results showed that performance in all the CANTAB subtests administered changed with age. Among the subtests, compared with performances in the SOC and IED, those in the SWM and SST improved earlier, thereby indicating that spatial working memory and inhibition develop earlier than planning as well as attentional set shifting and flexibility. Additionally, in the SST subtest, girls made fewer errors than boys did in the 6–7 years group. This study presents normative data of four CANTAB subtests according to age and sex among school-aged children in Japan. We expect that the findings will be used to develop effective tools for the early detection of and support for children with executive dysfunction

    Localization, regulation, and function of metallothionein-III/growth inhibitory factor in the brain.

    Get PDF
    The metallothionein (MT) family is a class of low molecular, intracellular, and cysteine-rich proteins with a high affinity for metals. Although the first of these proteins was discovered nearly 40 years ago, their functional significance remains obscure. Four major isoforms (MT-I, MT-II, MT-III, and MT-IV) have been identified in mammals. MT-I and MT-II are ubiquitously expressed in various organs including the brain, while expression of MT-III and MT-IV is restricted in specific organs. MT-III was detected predominantly in the brain, and characterized as a central nervous system-specific isomer. The role of MTs in the central nervous system has become an intense focus of scientific research. An isomer of MTs, MT-III, of particular interest, was originally discovered as a growth inhibitory factor, and has been found to be markedly reduced in the brain of patients with Alzheimer's disease and several other neurodegenerative diseases. MT-III fulfills unique biological roles in homeostasis of the central nervous system and in the etiology of neuropathological disorders.</p

    Targeting critical kinases and anti-apoptotic molecules overcomes steroid resistance in MLL-rearranged leukaemia.

    Get PDF
    BACKGROUND: Acute lymphoblastic leukaemia with mixed lineage leukaemia gene rearrangement (MLL-ALL) frequently affects infants and is associated with a poor prognosis. Primary refractory and relapsed disease due to resistance to glucocorticoids (GCs) remains a substantial hurdle to improving clinical outcomes. In this study, we aimed to overcome GC resistance of MLL-ALL. METHODS: Using leukaemia patient specimens, we performed bioinformatic analyses to identify target genes/pathways. To test inhibition of target pathways in vivo, we created pre-clinical therapeutic mouse patient-derived xenograft (PDX)-models by transplanting human MLL-ALL leukaemia initiating cells (LIC) into immune-deficient NSG mice. Finally, we conducted B-cell lymphoma-2 (BCL-2) homology domain 3 (BH3) profiling to identify BH3 peptides responsible for treatment resistance in MLL-leukaemia. FINDINGS: Src family kinases (SFKs) and Fms-like tyrosine kinase 3 (FLT3) signaling pathway were over-represented in MLL-ALL cells. PDX-models of infant MLL- ALL recapitulated GC-resistance in vivo but RK-20449, an inhibitor of SFKs and FLT3 eliminated human MLL-ALL cells in vivo, overcoming GC-resistance. Further, we identified BCL-2 dependence as a mechanism of treatment resistance in MLL-ALL through BH3 profiling. Furthermore, MLL-ALL cells resistant to RK-20449 treatment were dependent on the anti-apoptotic BCL-2 protein for their survival. Combined inhibition of SFKs/FLT3 by RK-20449 and of BCL-2 by ABT-199 led to substantial elimination of MLL-ALL cells in vitro and in vivo. Triple treatment combining GCs, RK-20449 and ABT-199 resulted in complete elimination of MLL-ALL cells in vivo. INTERPRETATION: SFKs/FLT3 signaling pathways are promising targets for treatment of treatment-resistant MLL-ALL. Combined inhibition of these kinase pathways and anti-apoptotic BCL-2 successfully eliminated highly resistant MLL-ALL and demonstrated a new treatment strategy for treatment-resistant poor-outcome MLL-ALL. FUNDING: This study was supported by RIKEN (RIKEN President\u27s Discretionary Grant) for FI, Japan Agency for Medical Research and Development (the Basic Science and Platform Technology Program for Innovative Biological Medicine for FI and by NIH CA034196 for LDS. The funders had no role in the study design, data collection, data analysis, interpretation nor writing of the report

    A multi-ethnic meta-analysis identifies novel genes, including ACSL5, associated with amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a devastating progressive motor neuron disease that affects people of all ethnicities. Approximately 90% of ALS cases are sporadic and thought to have multifactorial pathogenesis. To understand the genetics of sporadic ALS, we conducted a genome-wide association study using 1,173 sporadic ALS cases and 8,925 controls in a Japanese population. A combined meta-analysis of our Japanese cohort with individuals of European ancestry revealed a significant association at the ACSL5 locus (top SNP p = 2.97 × 10−8). We validated the association with ACSL5 in a replication study with a Chinese population and an independent Japanese population (1941 ALS cases, 3821 controls; top SNP p = 1.82 × 10−4). In the combined meta-analysis, the intronic ACSL5 SNP rs3736947 showed the strongest association (p = 7.81 × 10−11). Using a gene-based analysis of the full multi-ethnic dataset, we uncovered additional genes significantly associated with ALS: ERGIC1, RAPGEF5, FNBP1, and ATXN3. These results advance our understanding of the genetic basis of sporadic ALS

    Analysis of Medaka sox9 Orthologue Reveals a Conserved Role in Germ Cell Maintenance

    Get PDF
    The sex determining gene is divergent among different animal species. However, sox9 is up-regulated in the male gonads in a number of species in which it is the essential regulator of testis determination. It is therefore often discussed that the sex determining gene-sox9 axis functions in several vertebrates. In our current study, we show that sox9b in the medaka (Oryzias latipes) is one of the orthologues of mammalian Sox9 at syntenic and expression levels. Medaka sox9b affects the organization of extracellular matrices, which represents a conserved role of sox9, but does not directly regulate testis determination. We made this determination via gene expression and phenotype analyses of medaka with different copy numbers of sox9b. Sox9b is involved in promoting cellular associations and is indispensible for the proper proliferation and survival of germ cells in both female and male medaka gonads. Medaka mutants that lack sox9b function exhibit a seemingly paradoxical phenotype of sex reversal to male. This is explained by a reduction in the germ cell number associated with aberrant extracellular matrices. Together with its identified roles in other vertebrate gonads, a testis-determining role for Sox9 in mammals is likely to have been neofunctionalized and appended to its conserved role in germ cell maintenance
    corecore