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A B S T R A C T

Background: Acute lymphoblastic leukaemia with mixed lineage leukaemia gene rearrangement (MLL-ALL)
frequently affects infants and is associated with a poor prognosis. Primary refractory and relapsed disease
due to resistance to glucocorticoids (GCs) remains a substantial hurdle to improving clinical outcomes. In
this study, we aimed to overcome GC resistance of MLL-ALL.
Methods: Using leukaemia patient specimens, we performed bioinformatic analyses to identify target genes/
pathways. To test inhibition of target pathways in vivo, we created pre-clinical therapeutic mouse patient-
derived xenograft (PDX)-models by transplanting human MLL-ALL leukaemia initiating cells (LIC) into
immune-deficient NSG mice. Finally, we conducted B-cell lymphoma-2 (BCL-2) homology domain 3 (BH3)
profiling to identify BH3 peptides responsible for treatment resistance in MLL-leukaemia.
Findings: Src family kinases (SFKs) and Fms-like tyrosine kinase 3 (FLT3) signaling pathway were over-repre-
sented in MLL-ALL cells. PDX-models of infant MLL- ALL recapitulated GC-resistance in vivo but RK-20449,
an inhibitor of SFKs and FLT3 eliminated human MLL-ALL cells in vivo, overcoming GC-resistance. Further,
we identified BCL-2 dependence as a mechanism of treatment resistance in MLL-ALL through BH3 profiling.
Furthermore, MLL-ALL cells resistant to RK-20449 treatment were dependent on the anti-apoptotic BCL-2
protein for their survival. Combined inhibition of SFKs/FLT3 by RK-20449 and of BCL-2 by ABT-199 led to sub-
stantial elimination of MLL-ALL cells in vitro and in vivo. Triple treatment combining GCs, RK-20449 and ABT-
199 resulted in complete elimination of MLL-ALL cells in vivo.
Interpretation: SFKs/FLT3 signaling pathways are promising targets for treatment of treatment-resistant MLL-
ALL. Combined inhibition of these kinase pathways and anti-apoptotic BCL-2 successfully eliminated highly
resistant MLL-ALL and demonstrated a new treatment strategy for treatment-resistant poor-outcome MLL-
ALL.
Funding: This study was supported by RIKEN (RIKEN President’s Discretionary Grant) for FI, Japan Agency for
Medical Research and Development (the Basic Science and Platform Technology Program for Innovative Bio-
logical Medicine for FI and by NIH CA034196 for LDS. The funders had no role in the study design, data collec-
tion, data analysis, interpretation nor writing of the report.
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1. Introduction

Acute lymphoblastic leukaemia (ALL) is the most common type of
leukaemia in children [1]. ALL is characterized by an uncontrolled pro-
liferation of malignant lymphoid cells in the bone marrow (BM)
accompanied by suppression of other haematopoietic lineages. Fortu-
nately, the overall complete remission rate for childhood ALL has
increased significantly in the last decades and has recently been
reported as >95% [1]. Among various childhood ALL, mixed-lineage
leukaemia (MLL) gene-rearranged ALL (MLL-ALL) is associated with
one of the worst prognoses in which 5-year survival rates remain
approximately 40% [2�5]. Though recent effort in risk stratification
and intensified chemotherapy and stem cell transplantation improved
clinical outcome to a certain extent [6,7] treatment resistance of MLL-
ALL and MLL-AML has been one of the critical issues to be addressed
[8]. The MLL (also known as KMT2A) gene encodes a histone modify-
ing enzyme that catalyzes a specific lysine 4 (H3K4), which is essential
for the lineage commitment of haematopoietic stem and progenitor
cells (HSPCs) [9,10]. Chromosomal translocation between the MLL
gene and a fusion partner gene, leading to production of abnormal
fusion proteins, results in disturbed hematopoiesis of HSPCs. Among
over 70 fusion partners reported, translocations involving AF4, AF9
and ENL are the most frequent in MLL-ALL [11,12]. These fusion part-
ners of MLL are responsible for the sustained overexpression of Hox
genes and drives MLL-ALL proliferation [13,14] .

Currently, glucocorticoids (GCs), such as prednisone and dexa-
methasone, in combination with conventional chemotherapeutic

agents such as cytarabine, etoposide, or daunorubicin are used to
treat infant ALL. Although GC is a key agent for targeting lymphoid
malignancies, basic experimental studies showed that MLL-ALL
cells become rapidly resistant to GCs in vitro [15�22] an in vivo
[3,18,20,21]. Therefore, it is important to develop new drugs that can
recognize the abnormal proteins, expressed by MLL-ALL cells and
subsequently eliminate these. Armstrong and colleagues showed that
infant MLL-ALL cells express higher levels of Fms-like tyrosine kinase
3 (FLT3) compared to MLL-germline ALL and that high expression of
FLT3 in MLL-ALL correlates with poor prognosis [13]. Furthermore,
FLT3 is constitutively activated in MLL-ALL cells [23]. As another
potential mechanism for GC-resistance, phosphorylation of Src-fam-
ily kinases (SFKs) together with high expression of annexin A2 may
lead MLL-ALL cells resistance to GCs. Previous reports supported the
involvement of SFKs in treatment resistance of MLL-ALL cells to GCs
by showing that inhibition of SFKs prevented and reversed GC-resis-
tance in MLL-ALL cells in vitro [20,21,24].

In this study, we examined the effect of dual inhibition of FLT3
and SFK pathways in GC-resistant infant MLL-ALL in vivo using a
small molecule inhibitor RK-20449 [25]. Using MLL-ALL patient-
derived xenograft (PDX) models that we have previously reported
[26], we found addition of RK-20449 to dexamethasone eliminated
GC-resistant primary MLL-ALL cells in vivo in a majority of recipients
engrafted with infant MLL-ALL. However, in some cases, MLL-ALL
cells were significantly reduced but not completely eliminated.
Through B-cell lymphoma 2 (Bcl-2) homology domain 3 (BH3) profil-
ing, we found that these resistant cells were dependent on Bcl-2 for
survival and combined treatment using dexamethasone, FLT3/SFK
inhibition by RK-20449 and Bcl-2 inhibition by ABT-199 completely
eradicated human MLL-ALL cells both in vitro and in vivo.

2. Methods

2.1. Human samples ethics

The study using patient specimens has been approved at RIKEN
Institutional Review Board (approval number:17-17-4 [3]). 15 differ-
ent MLL-ALL patients BM or peripheral blood (PB) samples
were obtained from Saitama Children's Medical Center (n=6;
Pt.1,4,6,7,13,20, collected on 5th August 2011, 16th June 2011, 14th
July 2010, 12th May 2011, 10th October 2013, 3rd June 2014, respec-
tively), Shizuoka Children's Hospital (n=1; Pt.2 collected on 13th July
2011), Tokyo Medical and Dental University, Medical Hospital (n=5;
Pt.3,5,9,10,14 collected on 4th June 2010, 19th February 2010, 4th
June 2010, 4th June 2008, 4th June 2010, respectively), University of
Tsukuba Hospital (n=1; Pt.8 collected on 28th July 2011), Niigata Can-
cer Center Hospital (n=1; Pt.11 collected on 22nd July 2011), and
Ehime University (n=1; Pt.12 collected on 6th December 2011). Five
non-MLL ALL patient samples were collected from Tokyo Medical
and Dental University, Medical Hospital (n=3; Pt.15,16,17 collected
on 25th December 2013, 12th September 2013, 4th September 2013,
respectively), Kochi Health Sciences Center (n=1; Pt.18 collected on
19th December 2012), and Ehime University (n=1; Pt.19 collected on
7th December 2011). All participants gave written informed consent
in accordance with the Declaration of Helsinki. Normal CB were
obtained from Chubu Cord Blood Bank.

2.2. Mice ethics

NOD.Cg-PrkdcScidIl2rgtmlWjl/Sz (NSG) mice were bred and main-
tained under defined flora at the animal facility of RIKEN and at The
Jackson Laboratory according to guidelines established by the Institu-
tional Animal Committees at each institution. The approval number
for our mouse experiments at RIKEN is 2020-019 [3]. We followed
the ARRIVE guidelines in every experiment. Transplantation experi-
ments were performed using 1�3 day old NSG mice.

Research in context

Evidence before this study

Acute lymphoblastic leukaemia (ALL) with rearrangement of
the mixed-lineage leukaemia (MLL) gene frequently affects
infants and is associated with a poor prognosis due to their
poor response to the standard treatment in ALL with glucocorti-
coids. The Fms-like tyrosine kinase 3 (FLT3) is overexpressed in
MLL-ALL and Src-family kinases (SFKs) activation account for
GC-resistance in MLL-ALL. Therefore, these kinases are consid-
ered as potential drug-targets in MLL-ALL.

Added value of this study

We created a pre-clinical therapeutic mouse model by trans-
planting human MLL-ALL leukaemia initiating cells into
immune-deficient mice. This model recapitulated GC-resis-
tance. GC treatment combined with dual inhibition of FLT3 and
SFKs with our previously developed compound RK-20449 led
to reduction of GC-resistant human leukaemia cells in the MLL-
ALL engrafted mice. Furthermore, we found that MLL-ALL cells
resistant to RK-20449 treatment were dependent on the anti-
apoptotic B-cell lymphoma (BCL-2) protein for their survival
and they could be eliminated from the MLL-ALL engrafted mice
by additional inhibition of BCL-2 with ABT-199.

Implications of all the available evidence

This study demonstrates that inhibition of FLT3 and SFKs over-
comes GC-resistance in MLL-ALL engrafted mice. Further, this
study demonstrates that triple-treatment with GCs, RK-20449
and ABT-199 completely eliminates leukaemia cells from the
MLL-ALL engrafted mice. These results suggest that combined
inhibition of kinases and anti-apoptotic proteins targets MLL-
ALL cells and therefore this study identified a new potential
drug-treatment strategy for infant MLL-ALL patients.
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2.3. Transplantation

For xenogeneic transplantation, cells were obtained from BM or PB
of ALL patients. Mononuclear cells were isolated by density centrifuga-
tion (Lymphocyte Separation Medium, MP Biomedicals), then labeled
with mouse monoclonal antibodies to human CD34, CD38, CD19,
CD33, and CD3 (BD Biosciences), followed by isolation of CD3-CD33-
CD34+CD38+CD19+ and CD3-CD33-CD34-CD19+ cells by cell sorting
using FACSAria III (BD). 102 to 105 purified cells were injected IV in
NSG newborns after 1.5 G total body irradiation. For serial transplanta-
tion, mouse CD45 (mCD45)- mouseTer119- human CD45 (hCD45)+
cells isolated from recipient BM or spleen were used as donor cells.

2.4. In vivo treatment

MLL-ALL-engrafted NSG recipients underwent in vivo treatment
using dexamethasone 30 mg/kg i.p. once daily (SIGMA), RK-20449
30 mg/kg i.p. twice daily [25], ABT-199 (Active Biochem) 30 mg/kg p.
o. once daily and combination drug treatment as indicated. During
treatment, we harvested 20 mL PB from each mouse once per week
to determine hCD45+ leukemic cell chimerism. Recipient mice
were euthanized after 4�7 weeks of treatment or when they became
moribund.

2.5. Flow cytometry analysis

Recipient PB, BM and spleen of the recipient mice were stained
with fluorochrome-conjugated monoclonal antibodies to mTer119
(Clone TER119, RUO), mCD45 (Clone HI30, RUO), hCD45 (Clone 30-
F11, RUO), CD3 (Clone UCHT1, RUO), CD19 (Clone SJ25C1, RUO),
CD33 (Clone WM53, RUO), CD34 (Clone 8G12, RUO(GMP)), and CD38
(Clone HB7) (BD Biosciences) and analyzed using FACSAria III or
FACSCanto II (BD) and Flowjo software v10.4.0.

2.6. Microarray

MLL and non-MLL leukaemia samples were obtained through
JPLSG (Japan Pediatric Leukaemia/Lymphoma Study Group). Previ-
ously published microarray data [26] and new microarray data were
used for transcriptome analysis. In short, transcriptome data of
CD34- or CD34+CD38+ MLL-leukaemia initiating cells were obtained
from 14 different MLL-ALL patients (Pt.1,4,6,7,13,20 collected on 9th
August 2011, 14th July 2011, 17th May 2011, 14th July 2011, 23rd
March 2020, 23rd March 2020, respectively, from Saitama Children's
Medical Center; Pt.3,5,9,10,14 collected on 17th May 2011 from
Tokyo Medical and Dental University, Medical Hospital; Pt.2 collected
on 7th September 2011 from Shizuoka Children's Hospital; Pt.11 col-
lected on 7th September 2011 from Niigata Cancer Center Hospital;
Pt.12 collected on 23rd March 2020 from Ehime University). For non-
MLL leukaemias, transcriptome data of ALL-initiating cells were
obtained on 23rd March 2020 from one Philadelphia chromosome-
positive (Ph+) ALL patient (CD34-CD19+ for Pt.15, Tokyo Medical and
Dental University, Medical Hospital), two different ETV6-RUNX1
translocated patients (CD34+CD19+ for Pt.16 and 17 from Tokyo
Medical and Dental University, Medical Hospital), one t(5;15) translo-
cated patient (CD34-CD19+ for Pt.18 from Kochi Health Sciences Cen-
ter), and one patient without cytogenetic profile (CD34+CD19+ for
Pt.19 from Ehime University). Normal BM cells were purchased from
Cambrex (Walkerville). RNA was extracted using TRIzol (Invitrogen)
and cDNA was amplified by using ovation RNA Amplification System
V2 Kit (NuGEN). The cDNA was fragmented and labeled for Human
Genome U133 plus 2.0 GeneChip (Affymetrix). Microarray data was
analyzed by R Studio 1.1.463 [27] using the Bioconductor package
(http://www.bioconductor.org/). Analyzed data was normalized for
probe signal intensity using the GeneChip Robust Multiarray Averag-
ing (GC-RMA) package [28] and the Limma package [29] was used for

identifying differently expressed genes (DEGs) between ALL patient
samples and normal BM haematopoietic stem cells (HSCs). The
STRING data base [30] was used to find interactions among the DEGs
(using high confidence score > 0.700, clusters were tweaked) and
visualized with Cytoscape 3.7.2 [31]. Pathway enrichment analysis
was performed with the ClusterProfiler package [32] using the “Kyoto
Encyclopedia of Genes and Genomes (KEGG)” database [33] and visu-
alized with Cytoscape 3.7.2. Heat maps showing transcript levels in
MLL and non-MLL leukaemias were created using the heatmap pack-
age [34].

2.7. Flow cytometric analysis for phospho-kinase protein

2 £ 106 BM cells obtained from MLL-ALL engrafted recipients
(MLL-AF4; Pt.2, 4, MLL-ELN; Pt.8, MLL-AF9; Pt.10, 11, 12, 13), non-
MLL ALL engrafted recipients (Ph+ ALL; Pt. 15, TEL-AML; Pt.16, t
(5;15); Pt.18, unknown karyotype; Pt.19) or freshly isolated normal
CD34+ cord blood cells were fixed using Lyse/Fix buffer 5x (BD,
558049) at 37 °C for 10 min then permeabilized using Phosflow Perm
Buffer III (BD, 558050) at �30 °C for 30 min. Non-specific background
was blocked with BSA stain buffer (BD, 554657) and Fc receptors
were blocked by incubating cells in 1% mouse Fc Block (BD, 553142)
at 4 °C for 5 min. Cells were then stained for surface markers hCD45,
mCD45 and intracellular proteins pNF-kB (pS529), pAkt (pS473), pS6
(pS235/pS236) and p4EBP1 (pT36/pT45) (BD) at 4 °C for 1 h and ana-
lyzed using FACSCanto II (BD).

2.8. Immunohistochemistry

Tissue sections (3mm) were cut from 4% paraformaldehyde (PFA)-
fixed paraffin-embedded recipient organs. Sections were deparaffi-
nized using xylene and ethanol and antigen retrieval was performed
(Retrievagen A (pH 6.0), BD PharmingenTM). Non-specific background
was reduced by incubating the slides in methanol + H2O2 (Wako).
After blocking with horse serum, slides were incubated with mouse
anti-human CD45 antibody (DAKO, M0701) (1:150) then HRP-conju-
gated horse anti-rabbit/mouse IgG antibody (ImmPRESSTM, Cat. MP-
7500). Slides were then stained with 3,3’-diaminobenzine (DAB) and
hematoxylin, dehydrated, mounted using Vectamount (Vector Labo-
ratories) and analyzed with Axiovert 200 microscope (Zeiss). Photos
were taken using AxioCam MRc 5 (Zeiss) using the AxioVision rel. 4.6
software.

2.9. BH3 profiling

BH3 profiling was performed using the protocol described by the
Letai lab [35]. In short, 5 £ 106 BM cells obtained from recipients
engrafted with MLL-ALL were stained with Zombie NIR (BioLegend)
for 20 min at RT to exclude dead cells, labeled with surface markers
mCD45, hCD45, human CD33, and human CD19 for 30 min at 4 °C. As
a control, normal CB cells were used. After surface labeling, cells
were resuspended in DTEB buffer (135 mM trehalose, 20 mM EDTA,
20 mM EGTA, 5 mM succinic acid, 0.1% BSA, 10 mM HEPES and
50 mM KCl) to protect cells from spontaneous cytochrome C release.
Cells were then permeabilized (0.001% digitonin) and exposed to
BH3-only peptides (0.781 mM BIM, 80 mM NOXA, 80 mM HRK or
80 mM BAD) in DTEB buffer for 1 h. DMSO was used as a negative
control and alamethicin (25 mM) as a positive control. Cells were
then fixed (4% PFA), neutralized (Buffer-N2), permeabilized (Perm/
wash buffer I, BD) and stained for intracellular cytochrome c, using
Alexa Fluor� 647 Mouse anti-Cytochrome c (BD).

2.10. In vitro treatment

For in vitro culture, 1-2 £ 105 hCD45+ cells isolated fromMLL-ALL-
engrafted recipient spleen and human CD34+CD38- HSCs by cell
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sorting were seeded per well in 96-wells plate in Stemline II Haema-
topoietic Stem Cell Expansion Medium (SIGMA) supplemented with
stem cell factor (50 ng/ml), FLT3 ligand (50 ng/ml), thrombopoietin
(50 ng/ml), IL-2 (5 ng/ml), IL-3 (20 ng/ml), IL-7 (20 ng/ml) and IL-15
(10 ng/ml). The cells were exposed to 30 nM dexamethasone (SIGMA)
or RK-20449 [25] or increasing concentrations of ABT-199 (1 nM,
3 nM, 10 nM and 30 nM) (active Biochem) as indicated for 3 days at
37 °C in humidified atmosphere containing 5% CO2. Cells were har-
vested and stained with BV421-labeled anti-hCD45 and 7AAD, col-
lected in BD TruCountTM Tubes and analyzed using FACSCanto II (BD).

2.11. Statistical analysis

For in vivo treatment experiments, difference in the percentages
of hCD45+ cells in Pre- and Post-treatment PB and in the BM and
spleen between the four treatment groups was analyzed using a two-
tailed T-test whereby p<0.05 was considered as a significant differ-
ence. Percentages are given as means § SEM. All analyses were per-
formed by IBM SPSS Statistics v23 software (IBM Corporation �).
Synergistic effects of combination treatment on survival were ana-
lyzed using an algorithm based on Bliss definition [36].

2.12. Role of the funding source

The funder of the study had no role in study design, data collec-
tion, data analysis, data interpretation, or writing of the report. The
corresponding authors had full access to all the data in the study and
had final responsibility for the decision to submit for publication.

3. Results

3.1. MLL-ALL patient-derived PDX recapitulates glucocorticoid
resistance in vivo

We created PDX models for glucocorticoid-resistant primary
human MLL-ALL by intravenously injecting CD34-CD38+ leukaemia-
initiating cells (LICs) from five MLL-AF9 patients, CD34+ or CD34-
LICs from three MLL-ENL patients, and CD34+38+ or CD34-38+ LICs
from three MLL-AF4 patients into immunocompromised NSG new-
borns. Patient characteristics are summarized in Table S1. These
patient samples were included in our previous publication [26]. We
started in vivo treatment of MLL-ALL xenografts with dexamethasone

(30 mg/kg intraperitoneally once daily) when hCD45+ ALL cell chime-
rism reached 20% or higher in the recipient PB, then followed PB
human ALL chimerism by flow cytometry every week thereafter.
Although we found variable resistance of leukemic cells to dexameth-
asone, leukemic cells proliferated in a majority (16 out of 27) of MLL-
ALL samples examined. Overall, we observed that dexamethasone
treatment led to only a transient decrease in hCD45+ MLL-ALL cell
chimerism, recapitulating human treatment resistance (Fig. 1). To
overcome glucocorticoid resistance in MLL-ALL, we aimed to find
additional therapeutic targets.

3.2. Identification of critical pathways in glucocorticoid-resistant MLL-
ALL cells

To identify additional drug targets, we first compared transcrip-
tional profiles of normal BM CD34+CD38- HSCs and MLL-ALL
patient-derived LICs. Using our previously published [26] Affyme-
trix Human Genome U133 array data, we performed a differential
expression analysis and identified 915 significant differentially
expressed genes (DEGs), of which 301 were upregulated and 614
downregulated in MLL-ALL LICs compared to normal HSPCs. We
searched for interactions among proteins encoded by the DEGs
using the STRING database [30], and found clusters of proteins asso-
ciated with apoptosis, Src family kinases (SFKs), Janus Kinases (JAK)
family, and S100 proteins (Fig. 2a). Among the proteins associated
with SFK signaling pathway, we found HCK, BLK, ANXA2, and
S100A10 transcripts to be overexpressed in MLL-ALL cells. Interest-
ingly, we found IL7R, an activator of the JAK-STAT signaling path-
way, to be overexpressed in MLL-ALL cells (Fig. 2a). Non-MLL
leukaemias, such as Ph+ ALL, ETV6-RUNX1 translocated ALL and t
(5;15) translocated ALL, showed comparable transcript profiles as
MLL-ALL patients. Similar to MLL-ALL patients, HCK, ANXA2 and
IL7R transcripts were overexpressed in non-MLL compared with
HSPCs (Fig. S1a). In addition, we performed Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis on the DEGs and
determined the top 10 most enriched pathways based on the num-
ber of genes involved. Fig. 2b shows both the enriched pathways
and the associated overexpressed genes in MLL-ALL cells. Interest-
ingly, several kinases signaling pathways, like PI3K-Akt, MAPK, Ras
are enriched in MLL-ALL (Fig. 2b). Though we did not find over-
representation of NFKB1, RPS6, EIF4EBP1, and AKT1 genes in MLL
ALL at RNA levels as compared with normal CD34+ HSPCs, we found

Fig. 1. Glucocorticoid resistance of human MLL-rearranged ALL cells. In vivo effect of dexamethasone on hCD45+ MLL-ALL cells in the PB of recipient mice treated for 4 to 7
weeks with 30mg/kg dexamethasone once per day. Recipients engrafted with MLL-ALL cells were prepared from three different MLL-AF4 patients, three MLL-ENL patients, and five
MLL-AF9 patients (see Table S1). AF4 recipients: n=4 (Pt.1 n=1, Pt. 2 n=2, Pt. 4 n=1); ENL recipients n=6 (Pt. 6 n=3, Pt. 7 n=1, Pt. 8 n=2); AF9 recipients n=17 (Pt. 10 n=3, Pt. 11 n=4, Pt.
12 n=4, Pt. 13 n=5, Pt. 14 n=1). (a and b) Flow cytometry plots showing percentages of human and mouse CD45+ cells in PB from AF9 Patients (a) 11 and (b) 13 during dexametha-
sone treatment period. (c) PB chimerism of human MLL-ALL cells at the start of treatment, at lowest hCD45+ chimerism reached during treatment and at the end of treatment in
MLL-ALL recipients. Results are expressed as § 1 standard error of the mean with *P<0.05 by two-tailed T-test.
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high levels of pNF-kB, pS6, p4EBP1 and pAKT in human MLL-ALL
cells at the protein level suggesting functional activation of SFK and/
or other kinase signaling pathways (Fig. 2c, d, S1b and S1c). Based
on these results, we hypothesized that activation of these kinases
contributes to glucocorticoid-resistance in human MLL-ALL cells. To
test this hypothesis, we went on to determine whether human MLL-
ALL is sensitive to combined dexamethasone and RK-20449 (a small
molecule inhibitor of SFKs and FLT3) treatment in vivo.

3.3. Human MLL-ALL cells are eliminated by RK-20449 in combination
with dexamethasone in vivo

Since we could not eliminate MLL-ALL cells with dexamethasone
alone, we assessed whether additional inhibition of SFKs and FLT3
leads to more efficient killing of leukemic cells in vivo. We performed
in vivo therapeutic experiments using RK-20449, an inhibitor of SFKs
and FLT3, alone or in combination with dexamethasone. For the

Fig. 2. Different gene expression profile in MLL-ALL patient LICs and normal human HSCs. (a) Protein-protein interactions among the DEGs (log2FC>1 or log2FC<-1, and P value
<0.01) between three independent normal human HSC samples and LICs fromMLL-AF4 (Pt. 1�5), MLL-ENL (Pt. 6, 7 and 9), MLL-AF9 (Pt. 10, 11 and 14) patients found by the STRING
database. Blue are downregulated and red are upregulated genes. (b) Cnetplot showing both the most enriched pathways and their associated upregulated genes in LICs compared
to normal HSCs found by KEGG pathway enrichment analysis. (c and d) Phosphorylation levels of NF-kB, S6, 4EBP1 & AKT in two freshly isolated normal CD34+ cord blood samples
or in hCD45+ MLL-ALL cells from NSG-recipients of two AF4 patients (Pt. 2 and 4), one ENL patient (Pt. 8) and four AF9 patients (Pt. 10, 11, 12 and 13) are shown. (c) Representative
flow histogram plots showing percentages of phosphorylated proteins in hCD45+ recipient BM cells, using IgG isotype to set a threshold. (d) Phosphorylation levels in hCD45+ MLL-
ALL cells obtained from NSG-recipients or normal CD34+ cord blood cells (n=7 and 2, respectively). Results are expressed as § 1 standard error of the mean with *P<0.05 by two-
tailed T-test.
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treatment experiments, we created MLL-ALL-engrafted NSG recipient
mice using leukaemia cells derived from six MLL-ALL patients. After
human MLL-ALL chimerism reached 20% or greater, recipients were
treated with RK-20449 (30 mg/kg twice a day), alone or in combina-
tion with dexamethasone (30 mg/kg once daily). We analyzed the
frequency of hCD45+ leukemic cells with flow cytometry, and found

that dexamethasone and RK-20449 as single compounds were not
able to eradicate human MLL-rearranged leukaemia cells from PB
whereas combination of the two compounds led to significant reduc-
tion of hCD45+ cells in the PB of MLL-ALL-engrafted mice (Fig. 3a and
Table S2) and prolonged survival of treated mice (Fig. 3b). Using
Bliss-based algorithm assessing in vivo synergist effect [36], we found

Fig. 3. Elimination of human MLL-ALL cells by combination treatment in vivo. Treatment effect of dexamethasone alone, RK-20449 alone and combination of the two on LICS
from MLL-ALL-engrafted recipient mice. Recipients engrafted with MLL-ALL cells were developed from one AF4 patient, one ENL patient and four different MLL-AF9 patients (see
Table S1). Control treated recipients n=21 (Pt.2 n=3, Pt.8 n=3, Pt.10 n=3, Pt.11 n=4, Pt.12 n=5, Pt.13 n=3) dexamethasone-treated recipients n=21 (Pt.2 n=2, Pt.8 n=3, Pt.10 n=3, Pt.11
n=4, Pt.12 n=4, Pt.13 n=5); RK-20449-treated recipients n=21 (Pt.2 n=3, Pt 8 n=2, Pt.10 n=3, Pt.11 n=5, Pt.12 n=4, Pt.13 n=4); Combination-treated recipients n=24 (Pt.2 n=2, Pt.8 n=3,
Pt.10 n=3, Pt.11 n=6, Pt.12 n=5, Pt.13 n=5). Both drugs were administrated in a concentration of 30 mg/kg of which dexamethasone was administrated once a day and RK-20449
twice a day. (a) In vivo effect of dexamethasone alone (blue line), RK-20449 alone (red line) and combination of the two drugs (green line) on hCD45+ cells in the PB of MLL-ALL-
engrafted recipient mice over time. (b) Kaplan�Meier survival probability curves showing overall survival probability in untreated mice (black line), MLL-ALL recipient mice treated
with dexamethasone (blue line), RK-20449 (red line), or a combination of the two drugs (green line). Control recipients n=13 (Pt.2 n=2, Pt.8 n=1, Pt.10 n=1, Pt.11 n=3, Pt.12 n=4,
Pt.13 n=1), dexamethasone-treated recipients n=21 (Pt.2 n=1, Pt.8 n=3, Pt.10 n=3, Pt.11 n=4, Pt.12 n=3, Pt.13 n=7), RK-20449-treated recipients n=19 (Pt.2 n=2, Pt.8 n=1, Pt.10 n=3,
Pt.11 n=4, Pt.12 n=5, Pt.13 n=4), combination-treated recipients n=16 (Pt.2 n=3, Pt.8 n=1, Pt.10 n=2, Pt.11 n=4, Pt.12 n=3, Pt.13 n=4). An event was defined as when a recipient became
moribund and % human MLL-ALL cells in the BM was greater than 30% at the time of sacrifice. Recipients were censored if % human MLL-ALL cells in both BM and peripheral blood
were less than 10% after treatment course. Combination of RK-20449 and dexamethasone resulted in significantly prolonged survival compared with estimated additive effect of
RK-20449 and dexamethasone (shown as drug independence, purple line) (p=0.0245 by log-rank test), indicating synergistic effect of RK-20449 and dexamethasone on survival.
(c�e) The effect of dexamethasone alone, RK-20449 alone and combination on hCD45+ cells in (c and e) BM and (d and e) spleen of MLL-ALL recipients treated for 4 to 11 weeks. (c
and d) Remaining percentages of hCD45+ MLL-ALL cells in (c) BM and (d) spleen after treatment period. Results are expressed as § 1 standard error of the mean with *P<0.05 by
two-tailed T-test. (e) Representative photomicrographs show location of the remaining hCD45+ cells in BM and spleen of NSG recipients engrafted with MLL-ALL cells from patient
12 after the treatment. Tissue sections were stained with hematoxylin and immune-stained for hCD45 or with hematoxylin and eosin. Scale bar in the left panels means 50 mm and
that in the right panels depicts 10 mm.
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combination treatment using Dexamethasone and RK-20449 dis-
played synergistic effect in achieving prolonged survival of MLL-ALL
engrafted recipients. After 2 to 7 weeks of treatment, we analyzed
BM and spleen of the recipients to assess the therapeutic effect. In
MLL-ALL engrafted mice treated with either RK-20449 alone or dexa-
methasone alone, we found substantial number of residual hCD45+
cells in BM and spleen. In contrast, combined treatment with RK-
20449 and dexamethasone resulted in a significant reduction with
nearly undetectable levels of hCD45+ cells in the BM and spleen of
the recipients (Fig. 3c, d, and Table S2). Immunohistochemical stain-
ing for hCD45 in the recipient BM, spleen, kidney and liver confirmed
the in vivo elimination of patient leukaemic cells. In the untreated
mice, the majority of BM cells were hCD45+ leukaemia cells, with
infiltration of hCD45+ cells in spleen, liver, and kidney. Mice treated
with RK-20449 alone or dexamethasone alone showed residual
hCD45+ leukemic cells in each of organs examined. In contrast,
human cells were nearly completely eliminated from these organs in
recipients treated with RK-20449 and dexamethasone (Fig. 3e, S2,
and S3). Furthermore, the BM of all MLL-ALL recipients showed
recovery of murine hematopoiesis concurrent with the elimination of
human leukaemia cells during treatment with dexamethasone and
RK-20449, suggesting that combination treatment spares normal

haematopoiesis to some extent (Fig. 3e, S2, and S3). These findings
demonstrate the efficacy and safety of RK-20449 combined with
dexamethasone against human MLL-ALL in vivo. However, NSG mice
engrafted with MLL-ALL derived from Patient 11 showed the most
remaining leukaemia cells after combination treatment, in PB
(Fig. 3a), BM and spleen (Fig. 3c and d) compared to the recipients
engrafted with the other five cases indicating that leukemic cells of
Patient 11 are resitant even to the combination treatment. Immuno-
histochemical staining of various organs confirm these findings
(Fig. 3e, S2 and S3). Therefore, we went on to identify additional
mechanisms that render Patient 11-derived MLL-ALL cells resistant
to combined treatment with RK-20449 and dexamethasone.

3.4. BCL-2 inhibition induces apoptosis in MLL-ALL cells resistant to
combination therapy, in vitro and in vivo

As an additional target in MLL-ALL cells resistant to the combina-
tion treatment, we focused on anti-apoptosis pathway which was
enriched in MLL-ALL-initiating cells compared with normal HSPCs
(Fig. 2a). Altered expression of apoptotic genes can disturb the bal-
ance between pro- and anti-apoptotic proteins which thereby affects
cell fate decision of MLL-ALL cells. The Letai lab developed Bcl-2

Fig. 4. Inhibition of BCL-2 induces apoptosis in resistant MLL-ALL cells. (a) BH3 profiling in CD33-19+ BM cells of MLL-ALL recipients. Recipients were engrafted with MLL-ALL
cells obtained from 8 different MLL-ALL patients (see Table S1). AF4 recipients n=2 (Pt.2 and 4), ENL recipients n= 2 (Pt.6 and 8), AF9 recipients n=4 (Pt.10, 11, 12 and, 13). The effect
of BH3 peptides, BIM, NOXA, HRK and BAD were tested on the MLL-ALL cells. (b) In vitro effect of ABT-199 treatment in combination with dexamethasone and RK-20449 on hCD45+
MLL-ALL spleen and normal haematopoietic cord blood (Stem cells (CD34+), B-cells (CD19+) and T-cells (CD3+)) cells. Spleen cells were obtained from MLL-ALL recipients engrafted
with MLL-ALL cells from 3 different patients (Pt.4, 6, and 11). Normal haematopoietic cells were obtained from human cord blood samples. Dexamethasone and RK-20449 were
administrated in a concentration of 10 nM. ABT-199 was administrated in 4 different concentrations (1 nM, 3 nM, 10 nM and 30 nM) and incubated for 3 days at 37 C. (C�F) In vivo
effect of combination-treatment with dexamethasone and RK-20449 and triple-treatment with dexamethasone, RK-20449 and ABT-199 on hCD45+ cells of MLL-ALL engrafted NSG
mice. All drugs were administrated in a concentration of 30 mg/kg of which dexamethasone i.p. once a day, RK-20449 i.p. twice a day and ABT-199 orally once a day. Recipients
engrafted with MLL-ALL cells were developed from Patient 4 (AF4) and 11 (AF9) (see Table S1). Control treated recipients n=6 (Pt.4 n=2, Pt.11 n=4), Combination treated recipients
n=9 (Patient 4 n=3, Patient 11 n=6), Triple treated recipients n=6 (Pt.4 n=3, Pt.11 n=3). (c) Pre- and post-treatment levels of hCD45+ cells in the PB of MLL-ALL-engrafted recipient
mice after triple-treatment. The effect of combination and triple-treatment on hCD45+ cells in (d) BM and (e) spleen of MLL-ALL recipients. Results are expressed as § 1 standard
error of the mean with *P<0.05 by two-tailed T-test.
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homology domain 3 (BH3) profiling [35] as a functional tool to get
mechanistic insight into the mitochondrial apoptotic pathway, by
measuring mitochondrial permeabilization after exposing cells to
BH3 peptides. To identify key BH3 peptides that are responsible for
the treatment resistance, we examined levels of mitochondrial prim-
ing in human MLL-ALL cells to apoptosis by BH3 profiling. In the BH3
profiling, we exposed eight cases of human MLL-ALL cells to BH3 sen-
sitizer peptides NOXA, HRK and BAD as well as pro-apoptotic activa-
tor peptide, BIM. We found that in all cases, exposure to BIM resulted

in mitochondrial cytochrome C release in human MLL-ALL cells. Fur-
thermore, among three BH3 selective peptides, exposure to BAD
resulted in the most efficient mitochondrial cytochrome C release,
suggesting that human MLL-ALL cells depend on BCL-2 for survival
(Fig. 4a). We therefore proceeded to assess whether inhibition of the
BCL-2 anti-apoptotic pathway overcomes resistance to RK-20449/
dexamethasone combination treatment, using MLL-ALL cells that sur-
vived dexamethasone/RK-20449 combination treatment (Patients 4,
6 and 11) (See Table S2). MLL-ALL cells obtained from engrafted

Fig. 5. Elimination of MLL-ALL cells from the BM of a Patient 4 engrafted recipient that showed resistant to combination treatment. Representative photomicrographs show-
ing the location of remaining hCD45+ MLL-ALL cells in BM of Patient 4 engrafted NSG recipients after the treatment. The recipients were treated with a combination of dexametha-
sone and RK-20449 (upper) or with a triple combination of dexamethasone, RK-20449 and ABT-199 (lower). All drugs were administrated in a concentration of 30 mg/kg
dexamethasone i.p. once a day, 30 mg/kg RK-20449 i.p. twice a day and ABT-199 orally once a day. Femurs were immune-stained for hCD45 or stained with hematoxylin and eosin.
Bars represent 50mm.
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recipients were incubated with dexamethasone and RK-20449 plus
various concentrations of ABT-199, a BCL-2 inhibitor (Fig. 4b) [37,38].
We found that the addition of ABT-199 eliminated MLL-ALL cells
resistant to dexamethasone and RK-20449. At the same time, human
CB-derived HSPCs (CD34+) and mature T cells (CD3+) were not
affected by treatment with dexamethasone, RK-20449 and ABT-199
while mature B-cells (CD19+) cells showed expected reduction by the
addition of ABT-199 (Fig. 4b) [39]. ABT-199 alone treatment resulted
in temporal reduction of MLL-ALL cells in PB, but residual leukemic
cells in the BM and spleen and didn’t prolong survival of ALL-
engrafted recipients (Fig. S4a�d). However, oral administration of
ABT-199 in addition to the injection of 30 mg/kg of dexamethasone
and RK-20449 to the MLL-ALL recipients (Patients 4 and 11) resulted
in complete elimination of hCD45+ cells in the PB (Fig. 4c), BM
(Fig. 4d) and spleen (Fig. 4e). These findings were confirmed by
immunohistochemistry of BM from patient 4 engrafted NSG recipi-
ents (Fig. 5).

4. Discussion

Currently, GC such as dexamethasone has been used as one of the
key drugs for treating patients with lymphocytic leukaemia or malig-
nant lymphoma, as they induce apoptosis in malignant lymphoid
cells [40]. Although GCs are more effective in lymphoid than myeloid
diseases [41], relapse of leukaemia in infants with MLL-ALL after
treatment with GCs remains as a significant problem. Earlier studies
investigated resistance of MLL-ALL cells to GCs in vitro [18�21,42,43].
More recently, Kerstjens et al. developed a MLL-ALL cell line xeno-
graft model, using a RAS-mutated MLL-rearranged infant ALL cell
line, KOPN8, to investigate GC-resistance in MLL-ALL cells [44]. In
addition to the published study, we further aimed to address inter-
patient heterogeneity and patient-specific treatment resistance. In
this study, we successfully developed an in vivo therapeutic model by
xenogeneic transplantation of primary patient-derived cells into NSG
recipients, which mimics the resistance of infant MLL-ALL cells to
dexamethasone. Even from patients with a low peripheral disease
burden and little to no signs of extra-medullary involvement
(Patients 11 and 13), we were able to recapitulate GC-resistance in
MLL-ALL engrafted mice.

To understand the mechanism of GC-resistance in MLL-ALL
patients, we first searched for enriched pathways in primary patient
MLL-ALL cells compared with normal HSCs. Previous studies showed
that inhibition of Src kinase [20] may overcome GC resistance in
MLL-ALL cells in vitro. In this study, we found that MLL-ALL cells
showed elevated expression of HCK and BLK, members of SFKs, com-
pared with normal HSCs. In addition, it was previously demonstrated
that knockdown of S100A10 blocks Annexin A2 phosphorylation and
subsequently leads to GC-sensitization in MLL-rearranged ALL [21].
We found expression of both S100A10 and ANXA2 to be elevated in
LICs of MLL-ALL patients compared to normal HSPCs. Furthermore, a
recent study confirmed that MLL-leukaemia cells become rapidly
resistant to dexamethasone in vitro while becoming more sensitive
to kinase signaling. Especially, FLT3 signaling activity was increased
in MLL-leukaemia cells leading to constitutive activation of FLT3
downstream signaling pathways [23]. Consistent with these findings,
we observed enrichment of several FLT3 and SFK downstream path-
ways which we hypothesize play an important role in GC-resistance.
First, the MAPK signaling pathway is known to be activated by FLT3-
ligand (FL) stimulation in MLL-rearranged leukaemia cells [45]. More-
over, this pathway is believed to be activated via HCK phosphoryla-
tion leading to cell proliferation [46]. Previous studies reported that
MAPK signaling plays an important role in development of GC-resis-
tance in pediatric ALL cells and that inhibition of this pathway
restores GC-sensitivity [42,44,47]. Furthermore, Delgado-Martin
et al. suggest that IL7R/JAK/STAT inhibition sensitizes otherwise GC-
resistant T-ALL cells to GCs [48]. The JAK-STAT pathway is believed to

be one of the FLT3 downstream pathways in leukaemia [8,49] and
the claim was strengthen by a report of upregulated STAT5 phos-
phorylation following FL stimulation in MLL-rearranged leukaemia
[45]. In addition, STAT5 binds phosphorylated SFK which then leads
to cytoplasmic signaling in myeloid leukaemia’s [50]. SFK inhibitors
block this constitutive activation of STAT5 in (AML) cells [51]. Finally,
inhibition of another FLT3 downstream pathway [8,45,49], the PI3K-
Akt signaling pathway, reverses resistance of T-ALL [52] and MLL-ALL
[19] cells to GCs. Inhibition of HCK reduces the PI3K-Akt, but also the
MAPK signaling pathway, in cells with upregulated HCK expression
and thereby HCK becomes a potential drug target in leukaemia [53].
Taken together, SFK and FLT3 signaling seems to drive MLL-ALL via
several pathways which are cooperatively involved in GC-resistance.
Therefore, in this study we aimed to target both kinases on MLL-ALL
cells with RK-20449. The findings would possibly be applied to non-
MLL paediatric leukaemia, since genes involved in downstream of
SFK or FLT3 signalling such as HCK, IL7R, and S100A10 were also
upregulated in leukaemia cells with other genetic abnormalities
including the Philadelphia chromosome, ETV6-RUNX1 translocation,
and t(5;15) translocation.

MLL-ALL engrafted recipients were treated with dexamethasone
and RK-20449. Although each drug showed some single agent activ-
ity, the effect tended to be incomplete or of limited duration. Combi-
nation therapy, however, rapidly reduced the number of MLL-ALL
cells from the circulation and also eliminated the leukaemia cells
from BM and spleen in the majority of engrafted mice. In addition,
MLL-ALL cells infiltrating the liver and kidney were successfully
cleared by the combination treatment. These findings suggest that
inhibition of SFKs and FLT3, with subsequent reduction of corre-
sponding downstream pathways, reverses GC-resistance in infant
MLL-ALL cells.

However, in 3 out of 8 cases, we found residual leukaemia cells in
the recipient BM and spleen after the combination treatment with
dexamethasone and RK-20449. In the aim of clarifying which BH3
peptide MLL-ALL cells depend for survival, we performed BH3 profil-
ing showing that MLL-ALL cells were dependent upon Bcl-XL and Bcl-
2 for their survival. However, Bcl-XL inhibition is known to induce
thrombocytopenia in patients with lymphoid malignancies [54]. Con-
sistent with our findings, an earlier study showed that MLL-ALL cell
lines express high levels of Bcl-2 proteins and these cell lines as well
as patient-derived MLL-ALL xenografts were highly sensitive to the
Bcl-2 inhibitor ABT-199 [55]. We found that the triple-treatment
strategy using dexamethasone, RK-20449 and ABT-199 was highly
effective in targeting the otherwise resistant MLL-ALL cells in vitro
and vivo. Moreover, normal human HSCs and T-cells were not
affected by this drug treatment protocol. On the other hand, triple-
treatment was cytotoxic for normal mature B cells in vitro; this is con-
sistent with a report showing that both malignant and normal
mature B cells, but not normal precursor B-cells or myeloid cells, are
affected by ABT-199 treatment [39]. Our findings are consistent with
recent studies showing the effectiveness of inhibiting overexpressed
kinases and Bcl-2 proteins in leukaemia [56�58]. In addition, Goos-
sens et al., showed that JAK-STAT overexpression leads to increased
Bcl-2 transcription and thereby inhibits the GC-induced intrinsic apo-
ptosis pathway in leukaemia cells [59]. Therefore, we believe that
combination treatment of the multiple kinase inhibitor RK-20449
and the Bcl-2 inhibitor ABT-199 overcomes GC-resistance in MLL-
ALL, offering a new effective therapeutic strategy for this high-risk
disease.
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