65 research outputs found

    DIsulfide Mapping PLanner Software Tool

    Get PDF
    Disulfide bridges are side-chain-mediated covalent bonds between cysteines that stabilize many protein structures. Disulfide mapping experiments to resolve these linkages typically involve proteolytic cleavage of the protein of interest followed by mass spectroscopy to identify fragments corresponding to linked peptides. Here we report the sequence-based ā€œDIMPLā€ web tool to facilitate the planning and analysis steps of experimental mapping studies. The software tests permutations of user-selected proteases to determine an optimal peptic digest that produces cleavage between cysteine residues, thus separating each to an individual peptide fragment. The webserver returns fragment sequence and mass data that can be dynamically ordered to enable straightforward comparative analysis with mass spectroscopy results, facilitating dipeptide identification

    Mutations on M3 helix of Plutella xylostella glutamate-gated chloride channel confer unequal resistance to abamectin by two different mechanisms

    Get PDF
    Abamectin is one of the most widely used avermectins for agricultural pests control, but the emergence of resistance around the world is proving a major threat to its sustained application. Abamectin acts by directly activating glutamate-gated chloride channels (GluCls) and modulating other Cys-loop ion channels. To date, three mutations occurring in the transmembrane domain of arthropod GluCls are associated with target-site resistance to abamectin: A309V in Plutella xylostella GluCl (PxGluCl), G323D in Tetranychus urticae GluCl1 (TuGluCl1) and G326E in TuGluCl3. To compare the effects of these mutations in a single system, A309V/I/G and G315E (corresponding to G323 in TuGluCl1 and G326 in TuGluCl3) substitutions were introduced individually into the PxGluCl channel. Functional analysis using Xenopus oocytes showed that the A309V and G315E mutations reduced the sensitivity to abamectin by 4.8- and 493-fold, respectively. In contrast, the substitutions A309I/G show no significant effects on the response to abamectin. Interestingly, the A309I substitution increased the channel sensitivity to glutamate by one order of magnitude (āˆ¼12-fold). Analysis of PxGluCl homology models indicates that the G315E mutation interferes with abamectin binding through a steric hindrance mechanism. In contrast, the structural consequences of the A309 mutations are not so clear and an allosteric modification of the binding site is the most likely mechanism. Overall the results show that both A309V and G315E mutations may contribute to target-site resistance to abamectin and may be important for the future prediction and monitoring of abamectin resistance in P. xylostella and other arthropod pests

    Bisphenol A Binds to the Local Anesthetic Receptor Site to Block the Human Cardiac Sodium Channel

    Get PDF
    Bisphenol A (BPA) has attracted considerable public attention as it leaches from plastic used in food containers, is detectable in human fluids and recent epidemiologic studies link BPA exposure with diseases including cardiovascular disorders. As heart-toxicity may derive from modified cardiac electrophysiology, we investigated the interaction between BPA and hNav1.5, the predominant voltage-gated sodium channel subtype expressed in the human heart. Electrophysiology studies of heterologously-expressed hNav1.5 determined that BPA blocks the channel with a Kd of 25.4Ā±1.3 ĀµM. By comparing the effects of BPA and the local anesthetic mexiletine on wild type hNav1.5 and the F1760A mutant, we demonstrate that both compounds share an overlapping binding site. With a key binding determinant thus identified, an homology model of hNav1.5 was generated based on the recently-reported crystal structure of the bacterial voltage-gated sodium channel NavAb. Docking predictions position both ligands in a cavity delimited by F1760 and contiguous with the DIIIā€“IV pore fenestration. Steered molecular dynamics simulations used to assess routes of ligand ingress indicate that the DIIIā€“IV pore fenestration is a viable access pathway. Therefore BPA block of the human heart sodium channel involves the local anesthetic receptor and both BPA and mexiletine may enter the closed-state pore via membrane-located side fenestrations

    Gouldian finches are followers with black-headed females taking the lead

    Get PDF
    Colour polymorphism is a widespread phenomenon and often encompasses different behavioural traits and strategies. More recently, it has been shown that morphs can also signal consistent individual differences (personality). An example are Gouldian finches that show discrete head colour morphs in the same population with red-headed birds being more aggressive but less risk-taking and explorative than black-headed birds in the lab. The current study aimed to investigate the link between head colour and behavioural traits in a naturally risky situation in the wild by recording the order of descent at waterholes in relation to hypotheses considering conspicuousness, dominance relationships and experience. Other bird species at the waterholes were also included in the study. Adult Gouldian finches generally preceded juveniles and among the adults the least conspicuous black-headed females descended first to the waterhole. Overall, females descended before the males though this pattern disappeared later in the season likely due to family groups breaking up and releasing males from attending to the juveniles. Finally, Gouldian finches almost always followed other species, particularly Long-tailed finches, to the ground rather than taking the lead. A two-level process of decision-making seems to explain the responses best: on the first level, experience separates adults from juveniles with adults preceding juveniles and on the second level, conspicuousness acts as a factor among the adults with the least conspicuous category taking the lead. Future studies should directly test the link between head colour and personality in the wild, look more into seasonal effects and investigate whether Gouldian finches use Long-tailed finches as an indicator of safety

    Dataset of electrophysiological patch-clamp recordings of the effect of the compounds deltamethrin, ATx-II and Ī²4-peptide on human cardiac Nav1.5 sodium channel gating properties.

    Get PDF
    This article describes the effect of the pyrethroid insecticide deltamethrin on the cardiac voltage-gated sodium channel Nav1.5. Two concentrations of deltamethrin were used and the effects were compared with those of the sea anemone toxin ATx-II and Ī²4-peptide, which is the C-terminus of the Nav channel Ī²-subunit. Activation, fast inactivation, deactivation, persistent currents and resurgent currents of Nav1.5 channels were assessed in the presence of these compounds. The data display not only the effect of separately applied compounds on Nav1.5 channels but also investigates how combinations of these substances affect Nav1.5 channel gating properties. The dataset presented in this article is related to the research article "Mechanism underlying hooked resurgent-like tail currents induced by an insecticide in human cardiac Nav1.5ā€³ (Sarah Thull, Cristian Neacsu, Andrias O. O'Reilly, Stefanie Bothe, Ralf Hausmann, Tobias Huth, Jannis Meents, Angelika Lampert, doi: 10.1016/j.taap.2020.11501), that investigates the effect of the pyrethroid insecticide deltamethrin on Nav channel gating properties and explains the mechanism underlying hooked, resurgent-like tail currents induced by deltamethrin in Nav1.5 channels

    Functional validation of target-site resistance mutations against sodium channel blocker insecticides (SCBIs) via molecular modeling and genome engineering in Drosophila.

    Get PDF
    Sodium channel blocker insecticides (SCBIs) like indoxacarb and metaflumizone offer an alternative insecticide resistance management (IRM) strategy against several pests that are resistant to other compounds. However, resistance to SCBIs has been reported in several pests, in most cases implicating metabolic resistance mechanisms, although in certain indoxacarb resistant populations of Plutella xylostella and Tuta absoluta, two mutations in the domain IV S6 segment of the voltage-gated sodium channel, F1845Y and V1848I have been identified, and have been postulated through in vitro electrophysiological studies to contribute to target-site resistance. In order to functionally validate in vivo each mutation in the absence of confounding resistance mechanisms, we have employed a CRISPR/Cas9 strategy to generate strains of Drosophila melanogaster bearing homozygous F1845Y or V1848I mutations in the para (voltage-gated sodium channel) gene. We performed toxicity bioassays of these strains compared to wild-type controls of the same genetic background. Our results indicate both mutations confer moderate resistance to indoxacarb (RR: 6-10.2), and V1848I to metaflumizone (RR: 8.4). However, F1845Y confers very strong resistance to metaflumizone (RR: >3400). Our molecular modeling studies suggest a steric hindrance mechanism may account for the resistance of both V1848I and F1845Y mutations, whereby introducing larger side chains may inhibit metaflumizone binding

    A highly prevalent equine glycogen storage disease is explained by constitutive activation of a mutant glycogen synthase

    Get PDF
    Background: Equine type 1 polysaccharide storage myopathy (PSSM1) is associated with a missense mutation (R309H) in the glycogen synthase (GYS1) gene, enhanced glycogen synthase (GS) activity and excessive glycogen and amylopectate inclusions in muscle. Methods: Equine muscle biochemical and recombinant enzyme kinetic assays in vitro and homology modelling in silico, were used to investigate the hypothesis that higher GS activity in affected horse muscle is caused by higher GS expression, dysregulation, or constitutive activation via a conformational change. Results: PSSM1-affected horse muscle had significantly higher glycogen content than control horse muscle despite no difference in GS expression. GS activity was significantly higher in muscle from homozygous mutants than from heterozygote and control horses, in the absence and presence of the allosteric regulator, glucose 6 phosphate (G6P). Muscle from homozygous mutant horses also had significantly increased GS phosphorylation at sites 2 + 2a and significantly higher AMPKĪ±1 (an upstream kinase) expression than controls, likely reflecting a physiological attempt to reduce GS enzyme activity. Recombinant mutant GS was highly active with a considerably lower Km for UDP-glucose, in the presence and absence of G6P, when compared to wild type GS, and despite its phosphorylation. Conclusions: Elevated activity of the mutant enzyme is associated with ineffective regulation via phosphorylation rendering it constitutively active. Modelling suggested that the mutation disrupts a salt bridge that normally stabilises the basal state, shifting the equilibrium to the enzyme's active state. General significance: This study explains the gain of function pathogenesis in this highly prevalent polyglucosan myopathy

    Roles of the variable P450 substrate recognition sites SRS1 and SRS6 in esfenvalerate metabolism by CYP6AE subfamily enzymes in Helicoverpa armigera.

    Get PDF
    The cotton bollworm P450s of the clustered CYP6AE subfamily share high sequence identities but differ dramatically in their capacity to metabolize xenobiotics, especially esfenvalerate. Among them, CYP6AE17 has the highest sequence identity with CYP6AE18 but shows ~7-fold higher metabolic efficiency. CYP6AE11 is most active towards esfenvalerate but CYP6AE20 is inactive even though the enzymes share 54.8% sequence identity. Sequence analysis revealed the SRS1 (Substrate Recognition Site) and SRS6 between CYP6AE17 and CYP6AE18, and SRS1 between CYP6AE11 and CYP6AE20 are the most variable among all six SRSs. In order to identify the key factors that underlie the observed catalytic difference, we exchanged these SRS sequences between two pairs of P450s and studied the activity of the resulting hybrid mutants or chimeras. In vitro metabolism showed that the CYP6AE17/18 chimeras had 2- and 14-fold decreased activities and the CYP6AE18/17 chimeras had 6- and 10-fold increased activities to esfenvalerate. Meanwhile, after exchanging SRS1 with each other, the CYP6AE11/20 chimera folded incorrectly but the CYP6AE20/11 chimera gained moderate activity to esfenvalerate. Molecular modelling showed that amino acids variants within SRS1 or SRS6 change the shape and chemical environment of the active sites, which may affect the ligand-binding interactions. These results indicate that the protein structure variation resulting from the sequence diversity of SRSs promotes the evolution of insect chemical defense and contributes to the development of insect resistance to pesticides

    Mechanism underlying hooked resurgent-like tail currents induced by an insecticide in human cardiac Nav1.5.

    Get PDF
    Voltage-gated sodium channels are responsible not only for the fast upstroke of the action potential, but they also modify cellular excitability via persistent and resurgent currents. Insecticides act via permanently opening sodium channels to immobilize the animals. Cellular recordings performed decades ago revealed distinctly hooked tail currents induced by these compounds. Here, we applied the classical type-II pyrethroid deltamethrin on human cardiac Nav1.5 and observed resurgent-like currents at very negative potentials in the absence of any pore-blocker, which resemble those hooked tail currents. We show that deltamethrin dramatically slows both fast inactivation and deactivation of Nav1.5 and thereby induces large persistent currents. Using the sea anemone toxin ATx-II as a tool to prevent all inactivation-related processes, resurgent-like currents were eliminated while persistent currents were preserved. Our experiments suggest that, in deltamethrin-modified channels, recovery from inactivation occurs faster than delayed deactivation, opening a brief window for sodium influx and leading to hooked, resurgent-like currents, in the absence of an open channel blocker. Thus, we now explain with pharmacological methods the biophysical gating changes underlying the deltamethrin induced hooked tail currents. SUMMARY: The pyrethroid deltamethrin induces hooked resurgent-like tail currents in human cardiac voltage-gated Nav1.5 channels. Using deltamethrin and ATx-II, we identify additional conducting channel states caused by a faster recovery from inactivation compared to the deltamethrin-induced delayed deactivation
    • ā€¦
    corecore