3,659 research outputs found

    Charge order in Fe2OBO3: An LSDA+U study

    Get PDF
    Charge ordering in the low-temperature monoclinic structure of iron oxoborate (Fe2OBO3) is investigated using the local spin density approximation (LSDA)+U method. While the difference between t_{2g} minority occupancies of Fe^{2+} and Fe^{3+} cations is large and gives direct evidence for charge ordering, the static "screening" is so effective that the total 3d charge separation is rather small. The occupied Fe^{2+} and Fe^{3+} cations are ordered alternately within the chain which is infinite along the a-direction. The charge order obtained by LSDA+U is consistent with observed enlargement of the \beta angle. An analysis of the exchange interaction parameters demonstrates the predominance of the interribbon exchange interactions which determine the whole L-type ferrimagnetic spin structure.Comment: 7 pages, 8 figure

    Large Dual Transformations and the Petrov-Diakonov Representation of the Wilson Loop

    Full text link
    In this work, based on the Petrov-Diakonov representation of the Wilson loop average W in the SU(2) Yang-Mills theory, together with the Cho-Fadeev-Niemi decomposition, we present a natural framework to discuss possible ideas underlying confinement and ensembles of defects in the continuum. In this language we show how for different ensembles the surface appearing in the Wess-Zumino term in W can be either decoupled or turned into a variable, to be summed together with gauge fields, defects and dual fields. This is discussed in terms of the regularity properties imposed by the ensembles on the dual fields, thus precluding or enabling the possibility of performing the large dual transformations that would be necessary to decouple the initial surface.Comment: 35 pages, LaTeX, corrected version, accepted for publication in Phys. Rev.

    Orbital magnetism in the half-metallic Heusler alloys

    Full text link
    Using the fully-relativistic screened Korringa-Kohn-Rostoker method I study the orbital magnetism in the half-metallic Heusler alloys. Orbital moments are almost completely quenched and they are negligible with respect to the spin moments. The change in the atomic-resolved orbital moments can be easily explained in terms of the spin-orbit strength and hybridization effects. Finally I discuss the orbital and spin moments derived from X-ray magnetic circular dichroism experiments

    String Nature of Confinement in (Non-)Abelian Gauge Theories

    Get PDF
    Recent progress achieved in the solution of the problem of confinement in various (non-)Abelian gauge theories by virtue of a derivation of their string representation is reviewed. The theories under study include QCD within the so-called Method of Field Correlators, QCD-inspired Abelian-projected theories, and compact QED in three and four space-time dimensions. Various nonperturbative properties of the vacua of the above mentioned theories are discussed. The relevance of the Method of Field Correlators to the study of confinement in Abelian models, allowing for an analytical description of this phenomenon, is illustrated by an evaluation of field correlators in these models.Comment: 100 pages, LaTeX2e, no figures, 1 table, based on the Ph.D. thesises at the Humboldt University of Berlin (1999) (available under http://dochost.rz.hu-berlin.de) and the Institute of Theoretical and Experimental Physics, Moscow (2000), new results are included, extended with respect to the journal versio

    Effect of angular momentum distribution on gravitational loss-cone instability in stellar clusters around massive BH

    Full text link
    Small perturbations in spherical and thin disk stellar clusters surrounding massive a black hole are studied. Due to the black hole, stars with sufficiently low angular momentum escape from the system through the loss cone. We show that stability properties of spherical clusters crucially depend on whether the distribution of stars is monotonic or non-monotonic in angular momentum. It turns out that only non-monotonic distributions can be unstable. At the same time the instability in disk clusters is possible for both types of distributions.Comment: 14 pages, 7 figures, submitted to MNRA

    Manifestation of anisotropy persistence in the hierarchies of MHD scaling exponents

    Full text link
    The first example of a turbulent system where the failure of the hypothesis of small-scale isotropy restoration is detectable both in the `flattening' of the inertial-range scaling exponent hierarchy, and in the behavior of odd-order dimensionless ratios, e.g., skewness and hyperskewness, is presented. Specifically, within the kinematic approximation in magnetohydrodynamical turbulence, we show that for compressible flows, the isotropic contribution to the scaling of magnetic correlation functions and the first anisotropic ones may become practically indistinguishable. Moreover, skewness factor now diverges as the P\'eclet number goes to infinity, a further indication of small-scale anisotropy.Comment: 4 pages Latex, 1 figur

    Operation of graphene quantum Hall resistance standard in a cryogen-free table-top system

    Full text link
    We demonstrate quantum Hall resistance measurements with metrological accuracy in a small cryogen-free system operating at a temperature of around 3.8K and magnetic fields below 5T. Operating this system requires little experimental knowledge or laboratory infrastructure, thereby greatly advancing the proliferation of primary quantum standards for precision electrical metrology. This significant advance in technology has come about as a result of the unique properties of epitaxial graphene on SiC.Comment: 15 pages, 9 figure

    Charge and orbital order in Fe_3O_4

    Full text link
    Charge and orbital ordering in the low-temperature monoclinic structure of magnetite (Fe_3O_4) is investigated using LSDA+U. While the difference between t_{2g} minority occupancies of Fe^{2+}_B and Fe^{3+}_B cations is large and gives direct evidence for charge ordering, the screening is so effective that the total 3d charge disproportion is rather small. The charge order has a pronounced [001] modulation, which is incompatible with the Anderson criterion. The orbital order agrees with the Kugel-Khomskii theory.Comment: 4 pages, 2 figure

    Testing 6,8^{6,8}He density distributions by calculations of total reaction cross-sections of 6,8^{6,8}He+28^{28}Si

    Full text link
    Calculations of the 6,8^{6,8}He + 28^{28}Si total reaction cross sections at intermediate energies are performed on the basis of the Glauber-Sitenko microscopic optical-limit model. The target-nucleus density distribution is taken from the electron-nucleus scattering data, and the 6,8^{6,8}He densities are used as they are derived in different models. The results of the calculations are compared with the existing experimental data. The effects of the density tails of the projectile nuclei as well as the role of shell admixtures and short-range correlations are analyzed.Comment: 10 pages, 5 figures. Submitted to the International Journal of Modern Physics
    corecore