1,918 research outputs found

    Dual time-point FDG PET/CT for differentiating benign from malignant solitary pulmonary nodules in a TB endemic area

    Get PDF
    Objective. Fluorodeoxyglucose (FDG)-positron emission tomography (PET) is an accurate non-invasive imaging test for differentiating benign from malignant solitary pulmonary nodules (SPNs). We aimed to assess its diagnostic accuracy for differentiating benign from malignant SPNs in a tuberculosis (TB)-endemic area. Methods. Thirty patients, 22 men and 8 women, mean age 60 years, underwent dual time point FDG-PET/computed tomography (CT) imaging, followed by histological examination of the SPN. Maximum standard uptake values (SUVmax) with the greatest uptake in the lesion were calculated for two time points (SUV1 and SUV2), and the percentage change over time per lesion was calculated (%DSUV). Routine histological findings served as the gold standard. Results. Histological examination showed that 14 lesions were malignant and 16 benign, 12 of which were TB. SUVmax for benign and malignant lesions were 11.02 (standard deviation (SD) 6.6) v. 10.86 (SD 8.9); however, when tuberculomas were excluded from the analysis, a significant difference in mean SUV1max values between benign and malignant lesions was observed (p=0.0059). Using an SUVmax cut-off value of 2.5, a sensitivity of 85.7% and a specificity of 25% was obtained. Omitting the TB patients from analysis resulted in a sensitivity of 85.7% and a specificity of 100%. Mean %DSUV of benign lesions did not differ significantly from mean %DSUV of malignant lesions (17.1% (SD 16.3%) v. 19.4% (SD 23.7%)). Using a cut-off of %DSUV >10% as indicative of malignancy, a sensitivity of 85.7% and a specificity of 50% was obtained. Omitting the TB patients from the analysis yielded a sensitivity of 85.7% and a specificity of 75%. Conclusion. Our findings suggest that FDG-PET cannot distinguish malignancy from tuberculoma and therefore cannot reliably be used to reduce futile biopsy/thoracotomy

    Impact of optimized PET imaging conditions on F-18-FDG uptake quantification in patients with apparently normal aortas

    Get PDF
    Background The cardiovascular committee of the European Association of Nuclear Medicine (EANM) recently published recommendations on imaging conditions to be observed during F-18-FDG PET imaging of vascular inflammation. This study aimed to evaluate the impact of applying these optimized imaging conditions on PET quantification of arterial F-18-FDG uptake. Methods and Results Fifty-seven patients were prospectively recruited to undergo an early F-18-FDG PET/CT imaging at 60 minutes and repeat delayed imaging at >= 120 minutes post tracer injection. Routine oncologic F-18-FDG PET protocol was observed for early imaging, while delayed imaging parameters were optimized for vascular inflammation imaging as recommended by the EANM. Aortic SUVmax of the ascending aorta and SUVmean from the lumen of the superior vena cava (SVC SUVmean) were obtained on early and delayed imaging. Target-to-background ratio (TBR) was obtained for the early and delayed imaging. Aortic SUVmax increased by a mean of 70%, while SVC SUVmean decreased by a mean of 52% between early and delayed imaging (P 180 minutes. Aortic SUVmax significantly increased at imaging time-points between 120 and 180 minutes. No significant improvement in aortic SUVmax was seen at imaging time-points beyond 180 minutes. Conclusions F-18-FDG PET imaging conditions optimized for vascular inflammation imaging lead to an improved quantification through an increase in the quantified vascular tracer uptake and decrease in blood-pool background activity

    Plasma deposition of antibacterial nano-coatings on polymeric materials

    Get PDF
    Non-woven textile materials with antimicrobial properties are of high demands for applications ranging from medical dressing to everyday cleaning products. A plasma assisted route to engineer antimicrobial nano-composite coatings is proposed. Nano-particles of Ag, Cu and ZnO are tested as antimicrobial agents with average nano-particle size of 20-50 nm. Nanoparticles are incorporated in between two layers of an organosilicon film. The effect of the barrier coating on nano-particles release is determined by XPS. Antibacterial efficiency of the samples against P. aeruginosa ATCC 9027 and S. aureus M u50 bacteria shows that all treated samples exhibit higher antibacterial efficiency against S. aureus. The antibacterial efficiency of AgNPs and CuNPs is above 90% which is practically interesting for medical application while ZnONPs shows lower antibacterial efficiency.This work is supported by the M.Era-Net project IWT 140812 “PlasmaTex”.info:eu-repo/semantics/publishedVersio

    Development and prospects of dedicated tracers for the molecular imaging of bacterial infections

    Get PDF
    Bacterial infections have always been, and still are, a major global healthcare problem. For accurate treatment it is of utmost importance that the location(s), severity, type of bacteria, and therapeutic response can be accurately staged. Similar to the recent successes in oncology, tracers specific for molecular imaging of the disease may help advance the patient management. Chemical design and bacterial targeting mechanisms are the basis for the specificity of such tracers. The aim of this review is to provide a comprehensive overview of the molecular imaging tracers developed for optical and nuclear identification of bacteria and bacterial infections. Hereby we envision that such tracers can be used to diagnose infections and aid their clinical management. From these compounds we have set-out to identify promising targeting mechanisms and select the most promising candidates for further development.The Netherlands Organisation for Scientific Research (NWO; STW BGT 11272).http://pubs.acs.org/bchb201

    Effect of dispersion solvent on the deposition of PVP-Silver nanoparticles onto DBD plasma-treated polyamide 6,6 fabric and Its antimicrobial efficiency

    Get PDF
    Supplementary Material: https://www.mdpi.com/2079-4991/10/4/607/s1Polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs) dispersed in ethanol, water and water/alginate were used to functionalize untreated and dielectric barrier discharge (DBD) plasma-treated polyamide 6,6 fabric (PA66). The PVP-AgNPs dispersions were deposited onto PA66 by spray and exhaustion methods. The exhaustion method showed a higher amount of deposited AgNPs. Water and water-alginate dispersions presented similar results. Ethanol amphiphilic character showed more affinity to AgNPs and PA66 fabric, allowing better uniform surface distribution of nanoparticles. Antimicrobial effect in E. coli showed good results in all the samples obtained by exhaustion method but using spray method only the DBD plasma treated samples displayed antimicrobial activity (log reduction of 5). Despite the better distribution achieved using ethanol as a solvent, water dispersion samples with DBD plasma treatment displayed better antimicrobial activity against S. aureus bacteria in both exhaustion (log reduction of 1.9) and spray (methods log reduction of 1.6) due to the different oxidation states of PA66 surface interacting with PVP-AgNPs, as demonstrated by X-Ray Photoelectron Spectroscopy (XPS) analysis. Spray method using the water-suspended PVP-AgNPs onto DBD plasma-treated samples is much faster, less agglomerating and uses 10 times less PVP-AgNPs dispersion than the exhaustion method to obtain an antimicrobial effect in both S. aureus and E. coli.This research was funded by FEDER funds through the Operational Competitiveness Program – COMPETE and by National Funds through Fundação para a CiĂȘnciae Tecnologia (FCT) under the project POCI01-0145-FEDER-007136 and UID/CTM/00264/2019. A. Zille also acknowledges financial support of the FCT project PTDC/CTM-TEX/28295/2017 financed by FCT, FEDER and POCI.Isabel Ribeiro (SFRH/BD/137668/2018) acknowledges FCT, Portugal, for its doctoral grant financial support. A. Zille also acknowledges financial support of the FCT project PTDC/CTM-TEX/28295/2017 financed by FCT, FEDER and POCI
    • 

    corecore