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Abstract: 

Bacterial infections have always been, and still are, a major global healthcare problem. For accurate 

treatment it is of upmost importance that the location(s), severity, type of bacteria, and therapeutic 

response can be accurately staged. Similar to the recent successes in oncology, tracers specific for 

molecular imaging of the disease may help advance the patient management. Chemical design and 

bacterial targeting mechanisms are the basis for the specificity of such tracers. The aim of this review 

is to provide a comprehensive overview of the molecular imaging tracers developed for optical and 

nuclear identification of bacteria and bacterial infections. Hereby we envision that such tracers can be 

used to diagnose infections and aid their clinical management. From these compounds we have set-out 

to identify promising targeting mechanisms and select the most promising candidates for further 

development.  

 

Introduction 

Since the beginning of the last century antibiotics have been developed and used to treat bacterial 

infections, e.g. penicillins, quinolones and glycopeptides. Despite the success of these compounds, 

bacterial infections are still a serious global healthcare problem. Tuberculosis is the most prominent 

example causing an estimated 1.5 million deaths in 2009 (table 1).1  

In most patients bacterial infections are only identified when they have reached a systemic 

stage. Alternatively, the disease can become apparent when it has resulted in anatomical damage 

evident from clinical symptoms and/or via anatomical imaging e.g. X-ray, computed tomography 

(CT) and/or magnetic resonance imaging (MRI).2 We reason that early and molecular diagnosis of 
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bacterial infections has the potential to allow optimization of treatment regimes. A prerequisite for 

such molecular diagnosis are imaging agents that can specifically accumulate in or around bacteria 

(scheme 1B). While the applications of molecular imaging are showing success in e.g. oncology, there 

still is a shortness of effective molecular imaging approaches for bacterial infections. In our view, 

molecular imaging approaches for bacterial infections have the potential to i) discriminate bacterial 

infections from sterile inflammation, ii) visualize the anatomical spread of infections, iii) identify the 

type of bacteria to select the best antimicrobial therapy, and iv) allow therapy monitoring. 

Several unique molecular characteristics have been exploited to specifically target bacteria 

(summarized in scheme 1A). Especially the (negatively charged) bacterial membrane, excreted and 

membrane bound enzymes and receptors, intracellular enzymes and the DNA synthesis and 

translational machinery are specifically targeted. Next to this, passive internalization and intracellular 

entrapment can yield specific accumulation in bacteria. To achieve such targeting, and be suitable for 

clinical diagnostics, chemical entities have to fulfill a number of requirements. They should: 1) be 

non-toxic for the host, 2) target bacterial infections or produce a detectable signal upon interaction 

with bacteria, 3) penetrate rapidly into the infected area, and 4) emit a signal that allows in vivo 

identification.  

 

Table 1. 

 

Scheme 1. 

 

For the visualization of bacterial infections there are two main routes of tracer administration, 

namely intravenous (IV) injection or a topical (local) administration. Whole body diagnostics of 

bacterial infections requires intravenous injection followed by 3D nuclear imaging technologies such 

as single-photon emission computed tomography (SPECT) and positron emission tomography (PET) 

preferably combined with CT or MRI for anatomical reference.7 SPECT and PET imaging requires 

the incorporation of a radiolabel on the chemical moieties used to target the bacteria. Alternatively, 

superficial identification of bacterial infections and their spread e.g. during the surgical removal of 

infected prosthetics would benefit from fluorescence based identification.8-10 This relatively 

unexplored approach can be accomplished after IV administration of a fluorescent tracer, but could 

also benefit from the topical introduction of (activatable) imaging tracers. 

The technical aspects of nuclear and optical imaging of non-specific infection/inflammation 

imaging and the tracers currently used in the clinic have been reviewed by Signore et al,11 and 

Dorward et al.12 Regarding the current clinical state of the art, a number of nuclear imaging tracers are 

applied for non-invasive visualization of inflammations and infections, being 67Ga-citrate (the oldest 

tracer),13,14 its PET counterpart 68Ga-citrate,15-17 and a variety of radiolabeled leukocytes.18-24 
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Unfortunately these tracers accumulate in areas with sterile inflammations, infections, tissue 

regeneration, and cancerous lesions, making them non-specific for bacterial imaging. 

Here we summarize the most well investigated classes of bacterial tracers, as well as –in our 

view- high potential bacterial imaging approaches. 

 

Methods: 

We performed an extensive literature research to identify bioactive compounds, conjugated to 

fluorescent or radioactive labels, designed for the imaging of bacterial infections. The identified 

compounds are classified on their general structure and targeting mechanism. The main families are 

the zinc(II)-dipicolylamine (Zn-DPA) tracers, the antimicrobial peptides, the antibiotics, the 

activatable tracers and the proteins. To provide a comprehensive overview of the different imaging 

tracers described in the literature, the chemical structures of the compounds have been added in the 

supporting information. The numbering of the compounds in the supporting information has been 

used in the main review. The reported bacterial specificity and uptake in infected tissues, indicated by 

the target to non-target (T/NT) ratios of the different compounds (also see the supporting information) 

were used to compare the different imaging tracers and select the most optimal chemical designs for 

molecular bacterial imaging strategies. 

 

Most widely studied bacteria specific tracers 

 

Zn-DPA 

The negatively charged lipopolysaccharide and carbohydrate residues located in the outer 

membrane of both gram-positive and gram-negative bacteria are a potential target for imaging tracers. 

The positively charged metal complex zinc(II)-dipicolylamine (Zn-DPA) interacts with these 

negatively charged membranes (scheme 1A). This interaction facilitates discrimination between 

negatively charged bacterial membranes and neutrally charged membranes of mammalian cells. The 

Zn-DPA moiety facilitates conjugation to several types of labels, although the research has mainly 

focused on fluorescent labels. 

 

Labeling methods 

Imaging agents based on dimers, tetramers and multimers of Zn-DPA have been developed. A 

dimer was conjugated via a short polyethylene glycol spacer (PEG) to dansyl (1) or directly to 

fluorescent anthracene (2).25 A near-infrared (NIR) version of this tracer was developed by coupling a 

NIR-cyanine dye to the Zn-DPA moieties via a short alkyl spacer (fig. 1B; 3). This compound 

(commercialized as PSVue794) demonstrated membrane staining of bacterial cells both in vitro and 

in murine infection models.26-28 A Cy5-labeled Zn-DPA tracer (4) was applied to study the binding to 
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bacterial membranes in more detail via förster resonance energy transfer (FRET) interactions with a 

fatty acid conjugated Cy3-derivative that was incorporated in a bacterial-like lipid bilayer vesicle.29 

A second generation of the Zn-DPA moiety, based on 2,6-bis(zinc(II)-

dipicolylamine)phenoxide (5), was developed by DiVittorio et al.30 The tyrosine core of this targeting 

moiety enabled its incorporation in peptides and offered an additional reactive group for the 

attachment of moieties to fine-tuning the chemical and biological behavior of the synthesized tracers. 

Based on this concept, the 7-nitrobenz-2-oxa-1,3-diazol-4-yl-label (NBD) labeled version was 

synthesized and tested. Unfortunately no comparison was made with the first generation tracers. 

To develop Zn-DPA targeted tracers with brighter (higher quantum yield) and more 

photostable dyes, Johnson et al. selected a squaraine dye.31 Although squaraine dyes are chemically 

unstable in biological environments, incorporation into a rotaxane moiety to form a sterical barrier 

improved their stability dramatically. The squaraine rotaxane, labeled with four Zn-DPA moieties (6), 

proved to be equally bright to a Cy5-labeled version, but was found to be more photostable (t1/2 of 

1080 s and 11 s respectively). This increased photostability allowed the generation of real-time 

fluorescence-microscopy movies of dividing bacteria incubated with the imaging tracer.31 Squaraine 

dyes, protected by two different rotaxanes (6, 7), allowed in vivo visualization of infections.32 

The Zn-DPA targeting moiety has also been applied on nanoparticles presenting multiple 

copies of the targeting moiety. Biotin conjugated to Zn-DPA (8) facilitated binding to streptavidin 

coated quantum dots (em 565, 655 and 800 nm).33 A radioactive imaging agent containing the Zn-

DPA targeting moiety has also been developed. Herefore, biotinylated Zn-DPA and biotinylated 111In-

DOTA (9) were combined on streptavidin in a 1:1:1 ratio.34 

 

Bacterial imaging studies 

From a chemical point of view, the targeting moieties of the above-described tracers are 

exactly the same, except for compound 5. This offers the opportunity to compare the effect of the 

different imaging labels on the biological performance of the tracers. All compounds, except for the 

Zn-DPA labeled quantum dots (8) were able to bind to both gram-positive and gram-negative bacteria 

in vitro and in vivo. The quantum dots showed selectivity for gram-negative bacteria because their 

relatively large size (15-20 nm) prevented them from passing through the cell wall of gram-positive 

bacteria thereby limiting the interactions with the negatively charged membrane.33 

For compounds 3, 4, 6 and 7, the T/NT ratio in vivo was measured at several time points after 

IV injection. Thakur et al. reported a maximum T/NT ratio of 6.6 for a bacterial infection in the thigh 

of mice and a T/NT = 3.2 for a sterile inflammation at 3 h post injection of compound 3 (Fig. 1A).28 

Cy5-labeled Zn-DPA derivative 4 showed the fastest clearance and reached a T/NT ratio of 4.2 (6 h 

post injection); Little residual fluorescence was present at 24 h post injection.29 A clear difference in 

bacterial imaging was seen between the lipophilic squaraine rotaxane 7 and the more hydrophilic 

squaraine rotaxane 6. Tracer 6 reached a T/NT ratio of 6 (6 h post injection) and this ratio decreased 



  5

to 4 (21 h post injection), while the accumulation of 7 steadily increased to a T/NT ratio of 4 (12 h 

post injection) and remained steady till 21 h post injection.32 The non-specific uptake in various 

organs was also significantly higher for the more lipophilic compound 7. The radiolabeled Zn-

DPA/111In-DOTA-biotin-streptavidin complex reached a T/NT ratio of 2.8 (22 h post injection). 

Although the usefulness of the Zn-DPA targeting moiety for bacterial imaging has been 

demonstrated in several studies, its affinity for negatively charged structures has also been applied to 

target apoptotic cells, which become more negatively charged during the onset of apoptotic and 

necrotic processes.35-40 In this respect, also necrotic processes related to tumors have been imaged 

with Zn-DPA targeting moieties, because tumor genesis often involves dying cells (T/NT ratio of 2.2 

at 24h post injection).41  

 

Figure 1 

 

Summary 

Promising results have been described with the widely studied fluorescently and radioactive 

labeled Zn-DPA-derivatives. Both in vitro and in vivo, they have been able to label bacteria and 

image bacterial infections. However, the specificity remains an issue. Zn-DPA targets negatively 

charged cells, so this moiety targets also dead and dying cells such as in apoptotic and necrotic 

processes, which appear in both infectious and inflammatory processes. For that reason we think that 

Zn-DPA-derivatives are not the best candidates for infection specific imaging. 

 

Antimicrobial peptides 

Antimicrobial peptides (AMPs) are short polypeptides (12-50 residues) that form a part of the 

innate immune system in all classes of life. Generally, these antimicrobial peptides form amphipathic 

helices that bind to the bacterial membrane, mostly based on electrostatic interactions, and damage its 

integrity (scheme 1A). These peptides demonstrate a broad-spectrum activity against both gram-

positive and gram-negative bacterial strains. The interaction of these compounds with bacterial 

membranes makes them promising tools for targeting bacterial infections. 

 

Labeling methods 

Few fluorescently labeled AMPs have been described in the literature and they have not yet 

been applied broadly for infection imaging. Fluorescein-labeled Buforin II (10) and magainin 2 (11) 

were synthesized via an isothiocyanate coupling. The exact position of the label was not specified by 

the authors, as multiple free amines (N-terminus and lysine residues) were available for reaction with 

the isothiocyanate. Fluorescence imaging of labeled bacteria revealed internalization of Buforin II, 

while magainin 2 remained extracellular and caused lysis of the bacterial membrane.42  
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Cy5-labeled antimicrobial peptides cecropin P1 (12), SMAP29 (13) and PGQ (14) were 

synthesized by the selective introduction of a Cy5-maleimide on C-terminal cysteine residues, which 

left the pharmacophore of the AMP intact. These fluorescently labeled AMPs were applied for the 

direct labeling of bacteria or to replace antibodies in an in vitro immuno-magnetic bead biosensor.43  

Bac71-35 (15), labeled with bodipy-maleimide on a C-terminal cysteine residue, was used to 

evaluate bacterial penetration in vitro using fluorescence-activated cell sorting (FACS).44 

Furthermore, Bac71-35 was labeled with Alexa680-maleimide and studied for its antibacterial action in 

vivo. The distribution in healthy mice was studied by quantifying the fluorescence signal, but no 

targeting experiments in infected mice were conducted.45 

Nisin (16), an antimicrobial peptide produced by bacteria to kill competing strains 

(bacteriocin), was labeled with 5-(aminoacetamido)fluorescein (AAA-Flu) on a free C-terminal 

carboxylic acid. This fluorescent derivative was applied to elucidate its mode of action on the 

bacterial cell wall synthesis.46 

Nuclear labeled AMPs have been applied for the imaging of infections. We labeled human 

neutrophil peptide 1 (HNP-1; 17), a natural defensin, human -defensin-3 (HBD-3; 18) and the 

synthetic peptide lactoferrin 1-11 (99mTc-hLF 1-11; 19), derived from human lactoferrin with 99mTc 

via direct labeling.47-50 Histatins, antimicrobial peptides found in human saliva, were studied for their 

potential in bacterial imaging. 99mTc-labeled synthetic derivatives of histatin 5 and dimers thereof (20 

a-g) were developed. The in vitro antimicrobial activity was improved by forming histatin dimers, but 

these constructs did neither show improved in vivo killing of bacteria nor improved visualization of 

bacterial infections.51 

The most studied antimicrobial peptide for infection imaging is ubiquicidin 29-41 (UBI29-41; 

22a). This peptide sequence was selected from the complete sequence of the human antimicrobial 

peptide ubiquicidin (6.7 kDa). Generally, 99mTc is introduced on UBI29-41 via direct labeling (fig. 2B; 

22b).52 To evaluate the different approaches to coordinate 99mTc to UBI29-41 several chelate-conjugated 

UBI29-41 peptides were developed. They were compared with the direct labeling approach regarding 

binding to bacteria and imaging of bacterial infections. Conjugation of mercaptoacetyltriglycine 

(MAG3) to UBI29-41 (22c) was performed by coupling of tetrafluorophenol-activated 99mTc-MAG3 to 

free amines in UBI29-41. The resulting imaging agent showed similar bacterial binding capacity as 

observed for directly labeled UBI29-41..
53 The chelates 6-hydrazinonicotinic acid (HYNIC) and 

diaminedithiol (N2S2) were coupled N-terminally to UBI29-41 (22d,e).54 

Visentin et al. introduced 123I on the tyrosine residue present in the UBI-sequence (22f).53 The 

first UBI29-41 PET tracer was developed by introducing 18F via the coupling of N-succinimidyl-4-

[18F]fluorobenzoate to the free amines in UBI29-41 (22g).55 Unfortunately labeling via the lysine 

residues in the peptide sequence reduced the binding to S. aureus. Conjugation selectively to the N-

terminus instead of the lysine residues could prevent such interference with the biological activity of 

the AMP.54 Ebenhan et al. developed an UBI-based PET tracer 68Ga-NOTA-UBI30-41 (22h) with the 
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chelate conjugated to the N-terminus.56 Recently a NIR-fluorescently labeled version of UBI29-41 was 

developed and tested in mice with bacterial infections.57 

The fast clearance of peptides can hamper their application in vivo. Improved in vivo half-life 

for AMPs has been realized by applying peptidomimetics. Seo et al. synthesized amphipathic helical 

antimicrobial peptides consisting of peptoid building blocks. These are amino acids with the 

functional side chains connected to the amine nitrogen instead of the Cα of the amino acid backbone, 

which results in a reduced proteolytic susceptibility. 64Cu-DOTA labeled versions of these 

antimicrobial peptoids (21a-c) were developed. Although, the authors did not report any bacterial 

targeting, they showed greater in vivo stability and slower clearance compared to normal 

antimicrobial peptides.58 

 

Pretargeting 

In contrast to eukaryotic cells, bacteria can metabolize and utilize D-amino acids. Kuru et al. 

used fluorescently labeled D-amino acids (23a-d), which were incorporated in the peptidoglycan layer 

of all studied bacteria.59 By introducing R-propagylglycine or R-2-amino-3-azidopropanoic acid (24a-

b) to growing bacteria, either in vitro or to L. monocytogenes infected macrophages, the azide or 

alkyne moiety was incorporated in the peptidoglycan layer. These reactive groups could be labeled in 

a second step by complimentary labeled fluorophores via the Cu(I)-assisted or strain-promoted click 

reaction and the Staudinger ligation.59,60 

 

Bacterial imaging studies 

Fluorescently labeled Bac71-35 has been applied in vivo to study the biodistribution in healthy 

mice, showing fast clearance mainly via the kidneys.45 The biodistribution of a NIR-fluorescently 

labeled UBI29-41 peptide was tested in infected mice.57 Unfortunately, the dye seemed to influence the 

distribution of the construct to a large degree, resulting in a similar distribution for the dye alone 

compared to the fluorescently labeled UBI29-41. The other fluorescently labeled AMPs have not yet 

been applied in vivo. 

Radioactively labeled AMPs have been widely applied in infection imaging and some tracers 

have even been tested successfully in patients. 99mTc-HNP-1 (17) showed rapid imaging (5-15 min 

post injection) of infected thigh muscles in mice with a T/NT ratio of 2.47 HBD-3 (18) reached T/NT 

ratios between 2.5-3 in the infected thigh muscle model.50 For 99mTc-hLF 1-11 (19) different routes of 

administration were evaluated. After intravenous, intraperitoneal and subcutaneous administration 
99mTc-hLF 1-11 reached a T/NT ratio of 3.5-4 (1 h post injection) while oral administration resulted in 

a T/NT ratio of 2.5.49 Unfortunately, human lactoferrin, recombinant lactoferrin and peptide fragments 

thereof accumulated in the liver, kidneys and intestine, making these tracers less suitable for imaging 

infections in the abdominal area.48,61,62 Of the histatin variants, the best T/NT ratio was 4.5 (1 h post 
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injection) for the dimeric Dh5 (20e) in a S. aureus thigh muscle infection, but no further research has 

been reported51 

UBI29-41 (22a) has extensively been studied, both in the preclinic and the clinic. The selectivity of the 

peptide sequence for infections was determined in vivo by competition studies with both an unlabeled 

UBI29-41 and a scrambled version of UBI29-41 peptide.63 For 99mTc-UBI29-41 T/NT ratios between 2-3.5 

(1-2 h post injection) were reported in mice with an infected thigh muscle..48,64 In rabbits with infected 

thigh muscles, T/NT ratios between 2-5 (1-4 h post injection) were reported.61,65 99mTc-UBI29-41 has 

also been applied for the diagnosis of bacterial endocarditis, acute postoperative prosthetic joints 

infection and antibiotic therapy monitoring.66-69 In patients, 99mTc-UBI29-41 (22b) has been evaluated in 

bone, soft tissue, prosthetic and diabetic foot infections and in fever of unknown origin (FUO), 

resulting in T/NT ratios of 2.1-2.8 (0.5-2 h post injection) (Fig. 2A).70-74 Furthermore, 99mTc-UBI29-41 

has successfully been applied for antibiotic therapy monitoring.75 UBI29-41 labeled with 99mTc-HYNIC 

(22d) has also been evaluated in patients, resulting in similar T/NT ratios as reported for directly 
99mTc-labeled UBI 29-41.76Recently the biodistribution of 68Ga-NOTA-UBI30-41 was evaluated in 

healthy vervet monkeys, which showed rapid renal clearance without accumulation of radioactivity in 

the major organs.56  

 

Figure 2. 

 

Summary 

Antimicrobial peptides have proven to be effective tracers for imaging bacterial infections in 

animals and in patients making them ‘high potential’ candidates for further developments. Especially 

UBI29-41 has extensively been studied, for most other AMPs only limited data is available. Due to the 

relatively high background uptake, the reported T/NT ratios are generally ranging between 2 and 3, 

which has to be improved to make them clinically valuable. Additionally, the fast (renal) clearance 

and proteolysis of peptides in vivo can be an obstacle as it limits the circulation time of the tracer and 

the time window available for both pre-interventional and intra-interventional imaging. The 

application of peptidomimetics has the potential to increase the resistance against proteolysis and 

elongate the in vivo half-life. 

 
Carbohydrates 

Bacteria require carbohydrate building blocks for their replication, membrane synthesis, 

virulence and energy demand. Next to this, bacteria also interact with carbohydrates on cellular 

membranes to pass barriers or infiltrate cells.77 Therefore, specific carbohydrates are recognized 

and/or actively incorporated into bacteria or are taken up by passive internalization and further 

processed intracellular (scheme 1A). These mechanisms make carbohydrates possible targeting 
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moieties for imaging bacteria. By applying different carbohydrates, a selectivity for specific bacterial 

strains may be accomplished. 

 

Labeling methods 

In nature, carbohydrates are involved in low-affinity cell-cell interactions, but these 

interactions are effectively enhanced by the multivalency effect.78 To mimic these multivalent 

interactions, water-soluble carbohydrate-functionalized fluorescent polymers (25, 26) were developed. 

A mannose functionalized polymer showed aggregation with E. coli via interaction with the FimH 

lectin, while FimH deficient bacteria or galactose/glucose functionalized polymers showed no 

aggregation.79,80 Similar aggregation of bacteria and/or bacterial internalization of fluorescent 

nanocrystals (quantum dots; QDs) was observed with QDs (3.5-15 nm; em. 540-630 nm) coated with 

small molecules such as citrate-derivatives,81 adenine-derivatives,82 and mannose.83 However, the 

value of these constructs for in vivo application is limited due to their large size.  

Smaller analogues ranging from 1-7 monosaccharides have also been applied for bacterial 

imaging (27-36). Trehalose is a non-mammalian disaccharide that is incorporated in the membrane of 

mycobacteria by the trehalose mycolyltransesterase enzymes (Ag85 A-C).84 These enzymes have a 

broad substrate selectivity and tolerated the attachment of a fluorescein moiety (28), which enabled 

the fluorescent labeling of M. tuberculosis in vitro. 

2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG; 31) is the clinical standard nuclear imaging 

agent for tumor imaging with positron emission tomography (PET). Due to its uptake in areas with 

increased metabolism, its applicability for infection imaging was also studied.85-87 A 99mTc-labeled 

glucose derivative 1-thio--D-glucose 2,3,4,6-tetra-acetate (99mTc-TG; 32) was developed and the 

interaction with bacteria was compared to that of [18F]FDG.88 

Aminosugars are building blocks for the synthesis of the peptidoglycan layer in both gram-

positive and gram-negative bacterial strains. Martinez et al. introduced an 18F-label into N-

acetylglucosamine ([18F]FAG; 33) and demonstrated the possibility to discriminate between 

inflammation and bacterial infections in a rat muscle infection model.89  

A very promising imaging agent for bacterial infections is the thymidine kinase substrate 1-

(2’-deoxy-2’-fluoro--D-arabinofuranosyl)-5-iodouracil (FIAU; 34). This substrate is phosphorylated 

intracellularly by many pathogenic bacteria, after which it is trapped within the bacterium. As FIAU is 

a poor substrate for the major human thymidine kinase (TK1) and therefore it may be selective for 

imaging bacterial infections. Both a gamma emitting [125I]FIAU derivative as an positron emitting 

[124I]FIAU (fig. 3C) have been developed and tested for infection imaging.90-92 A similar 18F-labeled 

compound, 3’-deoxy-3’-[18F]fluorothymidine ([18F]FLT; 35) was developed by Jang et al.93 

The glucose demand of bacteria can be targeted with maltodextrin-based imaging tracers 

(MDPs; 27). Maltohexaose was labeled with a perylene or an IR786 label via the Cu(I)-catalyzed 
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click reaction (fig. 4B). The tracers were internalized specifically via the maltodextrin transport 

pathway where it is used as a source of glucose.94  

Cyclodextrin is a ligand for the maltose-binding protein expressed by bacteria. Shukla et al. 

labeled 2-hydroxypropyl cyclodextrin with 99mTc (99mTc-HPCD; 36) by direct labeling. The 

biodistribution in rats was studied and bacterial infections in patients with knee prosthesis were 

imaged.95 

 

Pretargeting  

A carbohydrate based pretargeting approach for bacteria was described by Dumont et al. They 

provided gram-negative bacteria with 8-azido-8-deoxy-3-deoxy-D-mannooctulosonic acid (KDO-N3; 

30), which is a ligand for CMP-KDO synthetase. Via this route KDO-N3 was incorporated in the 

lipopolysaccharide layer. Next, an alkyne-conjugated Alexa488 (30) was introduced to react with the 

incorporated KDO-N3 via the Cu(I)-catalyzed click reaction.96 A similar approach was recently 

performed with azide derivatives of the above described disaccharide trehalose (29a, b).97 

The advantage of a pretargeting approach is the minor chemical modification necessary for 

the primary targeting moiety, ensuring normal ligand binding and incorporation. In the second, step 

the imaging label is introduced and will react solely with the bacteria that have incorporated the 

primary targeting tracer. Both carbohydrates were effective in vitro. For in vivo experiments, the 

approach chosen by the authors will not be applicable because of the copper(I) required for the 

applied click reaction. A copper-free click reaction would be more appropriate for in vivo 

applications.98 

 

Bacterial imaging studies 

All events of increased glucose metabolism can cause increased uptake of [18F]FDG (31), 

such as growth, immunological reactions, tissue repair, malignancies, and the presence of replicating 

pathogens.99 A survey of the recent literature on the use of [18F]FDG in detecting mycobacterium 

infections let to the conclusion that [18F]FDG is not specific for bacterial infections.100 Although 

[18F]FDG was not capable of discriminating between different types of lesions that cause increased 

glucose uptake, this tracer was useful in antimicrobial therapy monitoring.100  

In a combined application of [18F]FDG and [11C]PK11195, a macrophage binding compound, 

Ren et al. could discriminate between septic and aseptic loosening of implants in rats by comparing 

the T/NT ratios of both tracers. 101 

Although a higher accumulation in infections was observed with a 99mTc-labeled glucose 

derivative 99mTc-TG (32) compared to [18F]FDG, this same increase was observed in tumors. 88 In 

contrast to [18F]FDG, the fluorine labeled glucosamine [18F]FAG (33) did show selectivity for 

bacterial infections in mice, resulting in a T/NT ratio of 2.8 for a bacterial infection and 1.4 for a 

turpentine oil induced inflammation (1 h post injection).89 
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Promising results have been obtained with FIAU (34). This nucleoside analog could image 

infections with bacterial strains that express TK1 or similar thymidine kinases. Bettegowda et al. 

injected 125I-labeled FIAU in mice infected with several gram-positive and gram-negative bacterial 

strains. In S. aureus infected mice a T/NT ratio of 14 (24 h post injection) was reported indicating a 

high sensitivity.90 Recently, this tracer was used to image diffuse lung infections in mice infected with 

E. coli. Bacteria infected lungs were specifically identified and they were able to detect bacteria at 109 

CFU/mL.92 Diaz et al. applied [124I]FIAU (34), a positron emitting variant, for the imaging of bacteria 

in patients with suspected musculoskeletal infections in knee joints and lower extremities. They 

reported accumulation of the tracer in all patients with confirmed bacterial infections and no 

significant accumulation was observed in a healthy control person or in a patient with a confirmed 

sterile inflammation (fig. 3A, B).91 Peterson et al. recently showed the uptake of [14C]FIAU in 

common bacteria for which immune suppressed patients are more susceptible and showed a good 

uptake for most, except for P. aeruginosa.102 

 

Figure 3 

 

Jang et al. recently applied both [125I]FIAU and 3’-deoxy-3’-[18F]fluorothymidine [18F]FLT 

(35) for the detection of S. typhimurium in vitro and in infected mice. The uptake of [125I]FIAU in 

bacteria was significantly higher than the uptake of [18F]FLT, nevertheless both agents accumulated at 

the infected lesions with T/NT of 2.98 and 12.3 (1 h and 2 h post injection respectively).93 However, 

[18F]FLT is also applied as a tool for measuring in vivo tumor cell proliferation, which makes this 

marker probably not bacteria specific.103 

Maltohexaose (27) targets the glucose-uptake of bacteria, which resulted in intracellular 

accumulation up to millimolar concentrations.94 In a mouse model inoculated with 107 CFU of viable 

E. coli in the thigh muscle a T/NT ratio of 26 was established (16 h post injection)(Fig. 4A). 

Moreover, a T/NT ratio of 2 was still achieved in mice infected with 105 CFU, indicating a high 

sensitivity. Uptake was shown in all tested strains: E. coli, P. aeruginosa, B. subtilis and S. aureus, 

which could make compound 27 a versatile tracer. 

 

Figure 4. 

 

The application of 99mTc-HPβCD as an infection specific tracer has been demonstrated by 

Shukla et al. After injection in rats, the 99mTc-HPCD was mainly cleared via the kidneys. In patients 

it showed an increased uptake in an infected knee over a control knee. Unfortunately, no T/NT ratios 

were reported and very poor information was provided in this publication about the used compounds 

and performed studies, which made it hard to draw any conclusions regarding its usefulness in 

infection imaging.95 
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Summary 

Carbohydrate tracers that accumulate in bacteria or bacterial membrane structures show great 

promise for the development of bacterial infection specific tracers. Especially trehalose (28, 29) for 

M. tuberculosis imaging and the maltohexaose (27) and FIAU (34) for more general bacterial imaging 

are promising candidates for clinical translation. 

 

Antibiotics 

The largest group of targeting moieties that has been investigated for infection imaging are 

the antibiotics. These drugs interact with high affinity and specificity with bacterial structures and 

intracellular proteins and enzymes (scheme 1A). It is this specificity that theoretically makes them 

ideal targeting moieties. Various studies have been performed using radiolabeled or fluorescently 

labeled antibiotics. 

 

Labeling methods 

Until now, most fluorescently labeled antibiotics have been used to study the permeability of 

antibiotics into tissue, the synthesis of bacterial membranes and cell walls, and the interactions of the 

antibiotics with the bacterial membrane. Fluorescently labeled vancomycin, telavancin, polymyxin B 

(fig. 5B), penicillin G (bocillin), and ramoplanin (37, 40, 43, 45, 46) have been described.44,104-107 All 

compounds were labeled on free amines using NHS-esters or isothiocyanates of fluorescein and/or 

bodipy. Using fluorescence imaging techniques these tracers revealed clear spots of increased labeling 

of or within the bacterial membrane (fig. 5A), indicating the sites of peptidoglycan synthesis or the 

presence of specific lipid structures. Dhanapal et al. developed a synthetic route towards fluorescent 

quinolones (44), which were able to label both gram-positive and gram-negative bacteria in vitro.108 

However, none of these fluorescently labeled antibiotics have, to our knowledge, been used for in 

vivo imaging of infections. 

 

Figure 5. 

 

Radioactive labeling is, generally speaking, a better choice for in vivo imaging applications 

with the relatively small sized antibiotics. Compared to labeling with large optical imaging labels, 

there is little to no effect of the nuclear labeling on the chemical structure. Multiple antibiotics have 

been radiolabeled to determine their biodistribution and several of them have been applied for 

infection imaging. For this purpose, direct labeling with 99mTc or incorporation of 18F during synthesis 

are the most applied methods of labeling. 

The major group of antibiotic tracers developed for infection imaging in (pre-)clinical settings 

are the fluoroquinolone antibiotics.109-124 Ciprofloxacin is the best studied derivative of this class of 
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antibiotics and the 99mTc-labeled version has been commercialized as Infecton for the imaging of 

infections (81a). 

 

Several other classes of antibiotics have also been radiolabeled and used for infection 

imaging, such as cephalosporins,125-133 aminoglycosides,134,135 and several others.134,136-144  

Singh et al. developed 99mTc-isoniazid (76), an antibiotic especially applied for treatment of 

TB. Radiolabeling was performed by the introduction of a thiol in the structure of isoniazid by 

reaction with 2-iminothiolane. This thiol facilitated the coordination of 99mTc to form a radiolabeled 

complex.145 By coupling two isonicotinic acid hydrazides to DTPA a 99mTc-labeled dimeric version of 

isoniazid (99mTc-DTPA-bis(INH)) was created (fig. 6C; 77).146  

Next to fluorescently-labeled vancomycin (see above), this antibiotic has also been labeled 

with various radioisotopes. Perkins et al. radioiodonated vancomycin with 125I in 1970, mainly to 

study the fate of the antibiotic in bacteria.147 Furthermore, vancomycin has been labeled directly with 
99mTc,148 and 201Tl (38).149,150 

 

Pretargeting 

Vancomycin has been applied in a pretargeting approach. The antibiotic was labeled with a 

trans-cyclooctene via the free amine on the carbohydrate moiety (41). After binding to bacteria, a 

magnetofluorescent nanoparticle (MFNP) with a tetrazine-moiety was added. This resulted in a 

reaction with the cyclooctene-vancomycine via the tetrazine-trans-cyclooctene ligation (TTCO) and 

subsequent visualization of the bacteria.151 A similar experimental setup was carried out with 

daptomycin, although this was less successful due to poor binding and/or due to diminished reactivity 

towards the tetrazine conjugated MFNPs. 

 

Bacterial imaging studies 

Although many antibiotics have been radiolabeled and tested for infection imaging 

applications, most of them were not successful in doing so. Modest to low T/NT ratios were reported 

or similar T/NT ratios were observed for both bacterial infections and sterile inflammations, 

indicating that no discrimination could be made. 

There are however some promising candidates within this class of imaging tracers, which we 

shortly discuss below. 99mTc-Cefepime (70), which binds to penicillin binding proteins (PBPs), 

demonstrated selective accumulation in an E. coli infected thigh muscle compared to a heat-killed E. 

coli and a turpentine oil induced inflammation in a rat model. A T/NT ratio of 8.4 (3 h post injection) 

compared to 4 and 3.3 respectively was reported.131 High T/NT ratio of 7.3 for an MRSA infection 

and 1.2 for a sterile inflammation (90 min post injection) were obtained in rats with 99mTc-rifampicin 

(72).137 The plant-derived 99mTc-pheophorbide-a (73) was able to discriminate between an infected 

and inflamed thigh muscle in rats with a T/NT ratio of 5.6 compared to 1.3 respectively (1 h post 
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injection).138 However, the amount of accumulated dose of the tracers was very low (0.0017 %ID/g). 

Injection of 99mTc-vancomycin (38) resulted in a T/NT ratio of 5 in S. aureus infected rats compared 

to a ratio of 1.5 for a sterile inflammation (1 h post injection).148 
99mTc-Isoniazid (76) showed a T/NT ratio of 3.5 (24 h post-injection) and could discriminate 

between an S. aureus and an M. tuberculosis infection.145 The combination of a 24 h imaging interval 

and the short half-life of 99mTc (6h) required a high initial dose to obtain sufficient signal. The 99mTc-

labeled dimeric isonicotinic acid hydrazide (77) accumulated at TB-lesions in mice with T/NT ratios 

between 4.2-4.5 (1-24 h) and reached a ratio between 2.87 and 2.46 in 6 patients with extrapulmonary 

TB infections (1 h and 4 h post injection respectively)(fig. 6A, B).146 

[131I]Linezolid (79), an antibiotic against gram-positive bacteria, showed the highest T/NT 

ratios of the above mentioned antibiotics. At 30 min post injection a T/NT ratio of 77.5 was reported 

for an S. aureus inflamed muscle in rats and a 14.9 ratio for a turpentine oil induced sterile 

inflammation.143 However, no further studies were performed or imaging data were presented. 

 

Figure 6. 

 

The most extensively studied radiolabeled antibiotic is ciprofloxacin, of which the 99mTc-

labeled version was commercialized as Infecton (81a). Its mode of action depends on blocking 

bacterial DNA replication by binding to DNA gyrase. Ciprofloxacin is a broad-spectrum antibiotic 

that is active against both gram-positive and gram-negative bacteria. After radiolabeling, this 

antibiotic could detect bacterial infections in both animal models and patients.152-158  

However, also critical results have been reported; e.g. significant accumulation in non-

infected prosthetic joints and the inability to discriminate between infected and aseptic osteoarticular 

disease in patients.116,159-161 In a phase II clinical study Infecton® showed poor specificity and 

accuracy in patients with suspected osteomyelitis both at images taken 2 h and 24 h post injection.162 

Based on these results, the company Draxis health inc. decided in 2007 to stop the further 

development of Infecton®. 

Since then several variants of ciprofloxacin with various radioisotopes or different methods of 

introducing them were developed. Langer et al. developed an 18F-labeled ciprofloxacin (81b) designed 

for PET-studies. Unfortunately, infection specific imaging in patients with [18F]ciprofloxacin was not 

successful.163,164 Zijlstra et al. introduced 18F via the coupling with 4-[18F]fluoro-ω-bromo-

acetophenone (81c), but no specific bacterial binding was observed with this tracer.55 Sachin et al. 

developed two other 18F-labeled derivatives of ciprofloxacin (81d,e) by introducing an alkylfluoride, 

resulting in good bacterial uptake into two E. coli strains, but no imaging studies were reported with 

this tracer.165 Zhang et al. introduced a dithiocarbamate to chelate 99mTc (81f) and reported 

accumulation in infected thigh muscle in mice.166 Dahiya et al. introduced different chelators for 99mTc 
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at several positions within ciprofloxacin (81g-i), which resulted in compounds with similar imaging 

characteristics compared to Infecton.167 

 

Summary 

Although antibiotics are selective in killing bacteria, they are not always selective in targeting 

bacteria and do not accumulate at infected sites. In many imaging studies with nuclear labeled 

antibiotics, only small differences are reported in the T/NT ratios between infections and sterile 

inflammations or no comparison has been made with sterile inflammations at all. Only a small 

number of antibiotics have shown potential for in vivo infection imaging. However, antibiotic-based 

imaging tracers will be ineffective in drug-resistant strains and applying antibiotics in sub-

therapeutical dosages causes increased mutagenesis and can lead to increased resistance against these 

antibiotics.168 

 
Promising new approaches 
 

Bacteriophages 

Bacteriophages are viruses that exploit bacteria as host for their reproduction. After 

recognition of the outer layer (scheme 1A), the bacteria are infected and new bacteriophages are 

synthesized generally killing the bacteria in the process. This recognition of certain bacterial strains 

can make bacteriophages highly specific targeting moieties for bacterial infections. 

 

Labeling methods 

Genetically labeled bacteriophages were created by incorporation of green fluorescent protein 

(GFP) on the C- or N-terminus of the small outer capsid (SOC) proteins of the virus to image bacteria 

e.g. in sewage water.169,170 Bacteriophages have been fluorescently labeled with fluorescent nucleic 

acid dyes SYBR gold and SYBR green I, after which they were used to target and label bacteria.171,172 

By combining immuno-magnetic isolation by antibody-coated magnetic beads with staining by 

bacteriophages, Goodridge et al. could reach very low detection limits (101-102 CFU/mL) of bacterial 

pathogens in food samples.173 The success of this approach strongly depended on the specificity of the 

applied antibodies and bacteriophages. 99mTc-labeled bacteriophages were developed to image 

infections in mice. The phages were covalently labeled on free amines with NHS-MAG3 and 

thereafter radiolabeled with 99mTc.174,175 

 

Pretargeting 

Wu et al. developed a pretargeting method with bacteriophages, by generating bacteriophages 

that express the minor coat protein pIII with an additional tetracysteine tag at the N-terminus. After 

binding of the bacteriophage to the target bacteria, it could be labeled with a fluorigenic biarsenical 

dye.176 Alternatively, Edgar et al. used the reproduction of bacteriophages by the target bacteria. The 
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applied bacteriophages contained a gene for the production of a biotinylated protein. And after 

production of the virus particles by the host, this protein could be targeted by streptavidin coated 

quantum dots.177 

 

Bacterial imaging studies 

Until now, none of these fluorescently labeled bacteriophages have been used for imaging 

bacterial infections in vivo, only for detecting bacteria in food or water samples. 

With the radiolabeled bacteriophage M13 a higher accumulation was observed in an E. coli 

infected thigh muscle compared to an inflamed thigh.174 T/NT ratios of 2-2.5 for infected and 1.5-1.8 

for inflamed tissues were reported (3 h post injection). Although the differences in uptake between an 

inflammation and an infection were significant, it was difficult to discriminate between them when 

evaluating the scintigrams. The authors expanded their approach for imaging infections with other 
99mTc-labeled bacteriophages, such as P22, E79, VD-13 and 60.175 Moderate to high in vivo T/NT 

ratios (2.1-14.2) were reported for infections with their target bacteria. However, for all imaging 

studies with all bacteriophages high liver uptake was observed.  

 

Summary 

The strength and at the same time the limitation of bacteriophages is that they only have 

affinity for specific bacterial strains, which would make it necessary to develop multiple 

bacteriophages for each bacterial strain of interest. A broad spectrum bacteriophage or a library of 

bacteriophages directed against multiple bacterial strains would be more widely applicable and would 

make this class of tracers into a high potential approach. 

 

Quorum-sensing 

A very new field of bacterial targeting is the targeting of the cell-to-cell communication amongst 

bacteria. This communication, via quorum-sensing, is based on the excretion of certain compounds 

that are recognized by neighboring bacteria via specific extracellular receptors (scheme 1A). The 

targeting of these receptors is a new approach of labeling bacteria. 

 

Labeling methods 

Gomes et al. used the well-known class of gram-negative bacterial quorum-sensing molecules N-

acyl-L-homoserine lactones (AHLs), which are recognized by the CepR-receptor. L-homoserine 

lactone was labeled with rhodamine B via an alkyl chain, which resulted in a fluorescent-labeling 

agent for QS receptors (FLAQS) (82).178 

 

Bacterial imaging studies 
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B. cenocepacia is a pathogen that infects mainly patients suffering from cystic fibrosis or with an 

compromised immunity. This bacterium was successfully labeled by FLAQS in vitro, both in an 

isolated sample as in a mix of CepR-expressing and CepR-knockout bacteria.178 No labeling was 

observed of bacterial strains that do not express the CepR receptor. 

 

Summary 

Although a very new field of bacterial imaging, targeting the bacteria via their communication 

system is a very elegant and promising approach. Each bacterial strain will have their own language 

(different set of compounds) which can be used as target. 

 

Enzyme activated tracers 

The enzymatically activatable tracers are a very interesting class of fluorescent tracers that 

utilize an approach that is already successfully applied in the field of oncology. These fluorescently 

silent tracers regain their fluorescence upon cleavage by bacterial proteolytic enzymes (scheme 1A). 

There are different mechanisms to reversibly silence fluorescent compounds, namely: i) via the 

presence of a fluorescence-quencher next to the fluorescent moiety, ii) the combination of a FRET 

pair, or iii) via the inactivation of the fluorescent dye by a reversible disruption of its conjugated 

system. Several classes of bacterial proteolytic enzymes have been targeted. 

 

-lactamase activatable tracers 

-lactamases are a class of bacterial enzymes that hydrolyze -lactams, which are chemical 

moieties present in e.g. -lactam antibiotics such as penicillin. Hydrolyzing the β-lactam deactivates 

the antibiotic and bacteria expressing a -lactamase are resistant to this class of antibiotics. -

lactamases are not expressed by eukaryotes, but can be introduced as a reporter gene of successful 

transfection. FRET-pairs separated by a β-lactam moiety were developed as tracers to deliver a visible 

signal upon successful gene incorporation.179-181  

Bacterial imaging with β-lactamase-sensitive tracers was introduced by Kong et al. They 

applied a Cy5.5 dye and a quencher (QSY21-derivative) linked via a -lactam linker (fig. 7B; 83, 84). 

In vitro a 10-fold increase in fluorescence was detected upon cleavage of this linker by -lactamase. 

This tracer was able to identify 104 viable CFU M. tuberculosis in lungs of infected mice via 

fluorescence imaging (Fig. 7A).182,183 Infected macrophages could also be analyzed by fluorescence-

activated cell sorting (FACS). Response monitoring to antibiotic treatment was also performed and 

visualized with this tracer, both in vitro and in vivo.183 

 

Figure 7. 
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The fluorescence of a fluorescein derivative (Oregon green 488; 85) was disrupted by linking 

two -lactamase substrates to the core of the dye. Upon cleavage by -lactamase the fluorescence was 

restored.184 

The described -lactam tracers are generally not considered to be selective for the different-

lactamases. However, Zhang et al recently reported a -lactam tracer with a fluorescein and 

rhodamine FRET pair (440-590nm; 86, 87), which showed different levels of cleavage by several 

subtypes of β-lactamase.185 

 

Protease activation 

Bacteria express multiple proteases to cleave signal peptides from newly synthesized proteins, 

to modify their own biological surroundings for survival, to grow and to defend themselves from 

attacks by the immune system and other bacteria. In contrast to their mammalian counterparts, certain 

bacterial proteases are capable of processing D-amino acids. A FRET-based protease sensitive tracer 

based on D-amino acids was developed for the identification of several bacterial species. Fluorescein 

and dabcyl were coupled to several peptide sequences containing D-amino acids, which resulted in 

tracers with selectivity towards a limited number of Bacillus strains including B. anthracis (88, 

89).186,187 Because eukaryotic proteases are not able to process D-amino acid residues these tracers are 

promising candidates for the specific imaging of bacterial infections. 

 

Sortase 

Sortase is an enzyme expressed by gram-positive bacteria to conjugate proteins to their 

extracellular peptidoglycan layer. The presentation of protein factors on the outer leaflet is an 

important feature of the bacterial virulence and disruption of this conjugation process is considered an 

alternative for the treatment of infections with drug resistant bacteria.188 Therefore, identifying the 

presence and activity of bacterial sortases has intensively been studied. In 2002 Kruger et al. 

described the synthesis of a potentially interesting tracer containing a FRET pair 

(rhodamine/fluorescein, 450/585nm; 90) linked via the peptide sequence -LPETG-, which is cleaved 

by sortase.189 Unfortunately, no data of this tracer in action, either in vitro or in vivo, were published. 

Other combinations of dyes have been conjugated to the -LPETG- peptide sequence and have 

been used to screen bacterial samples for the presence of sortases or for the screening of potential 

sortase inhibitors. Examples are: peptides labeled with 2,4-dinitrophenyl/o-aminobenzoyl (317/420 

nm; 91) and with dabcyl/edans (350/495nm; 92).190-194 Infection imaging based on the activity of 

sortase has not been performed yet. 

 

Pretargeting with sortase 
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By introducing reactive moieties on gram-positive bacteria by sortase a pretargeting approach 

was developed. This approach was first tested by direct labeling with fluorescein (93), which yielded 

fluorescently labeled bacteria in vitro.195 Next, an azide moiety was introduced onto the bacterial 

peptidoglycan layer via sortase.195 A secondary labeling could then be performed via a copper-free 

click reaction with Alexa Fluor 488-DIFO (94). 

 

Other activatable compounds 

The chromogenic antibacterial compounds based on phenoxazinone have been deactivated by 

coupling to β-alanine (95). The presence of bacterial β-alanylaminopeptidase can reactivate the 

chromo- or fluorophore yielding a visible signal. A detection based on a chromophore was first 

attempted and the tracer visualized different species of bacteria based on the colored read-out.196 A 

similar approach was conducted using N-aminoacylnaphthyridines (96). Upon cleavage of the β-

alanyl moiety, fluorescence was detected on agar-plates (350/370-440 nm), however, the obtained 

signals were too low for in vivo applications.197 

Staphylococcal strains produce staphylocoagulase, an enzyme that forms a selective protease 

together with prothrombin and is able to metabolize fibrinogen into fibrin. In this process it cleaves 

after the sequence X-Val-Pro-Arg-. This enzymatic action has been exploited to develop activatable 

fluorescent tracers based on coumarin to visualize staphylococcal strains.198,199 The sensitivity of these 

probes was improved by making a rhodamine version of these activatable probes (97), which has been 

applied in in vitro screenings.200 

 

Summary 

 Enzyme activatable infection tracers hold great promise and deserve much more attention in 

our view. Especially the low background signal, until these tracers are activated by bacteria, makes 

this class of imaging tracers ideal for local and topical applications. The main challenges for the 

further development of activatable tracers are achieving specificity for bacterial enzymes and 

generating a strong enough signal to facilitate in vivo imaging. 

 

Proteins 

In addition to the above, a number of proteins have also been reported. 

The protein-based class of bacterial imaging tracers consists mainly of endogenous proteins 

that are required by the bacteria, either for their own virulence or as a source of crucial nutrients and 

growth factors (scheme 1A). These proteins can be converted into imaging tracers by conjugating 

them with a suitable label. We here only mention the most promising candidate prothrombin; the 

other candidates are listed in the SI. 

  

Prothrombin 
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Staphylococcal strains are capable of secreting a fibrinogen-binding protein 

(staphylocoagulase). Prothrombin binds to staphylocoagulase to form an active complex that has 

fibrinogen-clotting capabilities, which in turn acts as a virulence factor in the infection 

pathogenesis.201 Labeled prothrombin has been used to image S. aureus in endocarditis. The labeling 

of prothrombin was performed via a small inhibitory peptide that binds covalently in the active site of 

prothrombin (fig. 8B). Next, a thiol group located in this small inhibitory peptide was deprotected and 

subsequently labeled with Alexa680-maleimide or 64Cu-DTPA for fluorescence molecular 

tomography-computed tomography (FMT-CT) or PET-CT imaging, respectively.202 Coagulase-

positive S. aureus bacteria were detected in a mouse endocarditis model by both PET- and FMT-

imaging techniques (fig. 8A). 

 

Figure 8. 

 

Summary 

 The class of protein-based bacterial tracers is quite diverse and their specificity is still under 

debate. Due to their medium to large molecular size their targeting of infections will most likely be 

based on both non-specific accumulation and specific targeting. 

 

Discussion 

Most tracers we have described in this review were developed with the intention to image 

bacterial infections. Evidently such tracers hold great medical potential if they: i) lead to clinical 

detection of infections, ii) enable discrimination between sterile inflammations and bacterial 

infections, and iii) allow for therapy response monitoring. Although the majority of the bacterial 

tracers still rely on rather generic targeting moieties, we are under the impression that, similar to e.g. 

cancer diagnostics, the field of bacterial imaging is moving towards more biomarker specific 

approaches. This can mean specific targeting of membranous biomarkers or the use of specific 

enzymatic activation pathways. 

A major hurdle in the development of infection specific imaging agents is the selectivity for 

infections over inflammatory processes. Although the in this review described imaging tracers are 

developed to target bacteria specifically, many of them could not fulfill that expectation. Since good 

comparative studies are lacking it is difficult to support one approach over the other. Nevertheless, we 

defined “potential” in four categories: 1) tracers that are well investigated and where first-in-human 

data is available, 2) tracers that will be relatively easily introduced in the clinic, 3) promising tracers 

that utilize a concept proven in other imaging approaches, 4) innovative new concepts. 

Three tracers from the well-studied tracer families belong in category 1: 

I) the AMP 99mTc-UBI29-41 (22b) has been subject of several clinical studies into the 

imaging of infections. The obtained imaging data show specificity for bacterial 
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infections in multiple clinical studies, however the reported T/NT ratios are 

relatively low.  

II) The nucleoside analog [124I ]FIAU (34) is entrapped in bacteria after 

phosphorylation by thymidine kinase. 

III) Antibiotic isoniazid has been conjugated to the chelate DTPA to form a dimeric 

compound DTPA-bis(INH) (77) which has shown great potential in imaging 

extrapulmonary TB infections. 

Imaging tracers based on already clinically applied compounds, which are used for other 

indications, belong in category 2. Their GMP availability should make their clinical use in bacterial 

imaging applications more straightforward. In this category a number of antibiotics should be 

classified: 99mTc-Vancomycin, 99mTc-rifampicin, 99mTc-pheophorbide-a and [131I]linezolid (38, 71, 72, 

and 78). There are, however, some drawbacks of the use of antibiotics for imaging. For example, they 

are of no value when the invading pathogen is resistant to the used antibiotic and the use of antibiotics 

at sub-therapeutic dosages may promote the development of resistant bacterial strains.168 

Enzyme activatable bacterial tracers in our view belong in category 3 and are a promising 

class of infection specific tracers. Activatable tracers can be used during local (topical) tracer 

administration, whereby the biggest challenge lies with the reduction of nonspecific background 

signals: washing away of unbound tracer is not always an option. Uniquely, fluorescent silent 

compounds can be made fluorescent after activation by bacterial proteases or by binding to bacterial 

membranes.203 The concept of enzymatically activatable tracers has already been successfully applied 

in the field of oncology and the concept will -in our view- also be very well applicable in the field of 

infection imaging.204 

Category 4 includes the application of bacteriophages and targeting quorum sensing. These 

approaches have a high potential through their selectivity for individual classes of bacteria. However 

more exploratory research is required in these areas. 

 

In this review we have focused on two imaging modalities, being nuclear imaging and 

fluorescence imaging. Each of these modalities has its own strengths and weaknesses. Nuclear 

imaging is ideal for detecting hidden and deep seeded infections. Due to its high tissue penetration it 

allows non-invasive whole body scanning. This said, nuclear imaging has a low spatial resolution and 

real-time surgical imaging is difficult. Fluorescence imaging has a high spatial resolution and can be 

visualized in real-time by dedicated fluorescence camera systems, thus allowing for a surgical 

use.205,206 Unfortunately, optical imaging suffers from poor tissue penetration, even for dyes in the 

favorable near infrared window, the tissue penetration is limited to approximately one centimeter.207 

For superficial applications, such as surgical wound infections, prosthetic surface inspections or even 

with laparoscopic inspections, tissue attenuation is less of a problem. An additional advantage of 
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fluorescence is that it enables multiplexing;208 a technique that can simultaneously detect multiple 

fluorescence emissions e.g. coming from different bacterial strains present in the surgical wound. 

We reason that similar to image guided procedures in oncology in the future hybrid 

approaches, wherein the tracers are both radioactive and fluorescent, may be used for bacterial 

targeting (scheme 1B).209,210 A hybrid approach would be very well suited for the identification of 

deep seeded and hidden bacterial infections. At the same time the fluorescence component of the 

tracer may be used to provide the surgeon with a visible signal to verify the complete removal of the 

infection. Furthermore, the fluorescence can still be detected and analyzed at pathology, which can 

possibly provide additional data about the specific infection and the efficiency of the bacterial 

targeting.211 

 

Conclusions 

In the field of imaging bacterial infections interesting developments are ongoing. A number 

of compounds have been developed that demonstrated a potential value in infection models. Some of 

these compounds have already been used in the clinic, while other more experimental approaches 

show great potential. Due to the increasing demand for surgical guidance technology, the field is more 

and more moving towards embracing fluorescence as imaging modality.  

In our opinion the current challenges lie in the identification of new specific targeting 

mechanisms and further optimization of the bacteria targeting moieties described so far. When more 

specific bacterial tracers become available for clinical use, such compounds may have a serious 

impact on global healthcare. 
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AMP:  antimicrobial peptide 

CFU:  colony forming units 
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FMT:  fluorescence molecular tomography 
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FRET:  förster resonance energy transfer 

iv:  intravenous 

MRI:  magnetic resonance imaging 

PET:  positron emission tomography 

QD:  quantum dot 

SPECT: single-photon emission computed tomography 

T/NT:  target to non-target 
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Scheme 1. A) Pathways of bacterial targeting with imaging tracers, B) Bacterial specific imaging tracers, 

containing a fluorescent, nuclear or hybrid label, can have their applications in locating and diagnosing local and 

hidden bacterial infections. 

 

 

Figure 1. Fluorescence images of S. aureus infected mice. Image taken 0 h (A), 3 h (B), 6 h (C), 12 h (D), 18 h 

(E), and 21 h (F) after injection of 75 µL of a 1 mM solution of PSVue 794 (3) (G). (Reprinted with permission 

from Matthew et al. Bioconjug. Chem. 2008, 19(3), 686-692. Copyright 2008 American Chemical Society) 
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Figure 2. Posterior and anterior view of a patient with a septic process in the lumbar vertebra. The patient was 

injected with 99mTc-UBI29-41 (22b) and imaged by scintigraphy 2 h post injection. (image reproduced from 

Welling et al.).212  

 

 

Figure 3. PET/CT scans of septic arthritis (MRSA) in the right knee (a) and cellulitis (multiple bacterial strains) 

in the left lower extremity (b) 2 hours after IV injection of 74 MBq of [124I]FIAU. (Reprinted from Diaz. Et al. 

PLoS ONE 2007, 2(10), e1007) 

 

 

 

Figure 4. a) Discrimination between a an E. coli infection and an LPS induced inflammation in a rat model (a) 

16 h after IV injection of 280-350 µL of a 1mM solution of IR786-labeled maltodextrin (b). - (Reprinted by 

permission from Macmillan Publishers Ltd: Nature Materials, 10(8), 602-607, copyright (2011))94 
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Figure 5. Confocal microscopy images of E. coli (a) incubated with 0.1 µM of bodipy-labeled polymyxin B (b). 

(Antimicrobial Agents and Chemotherapy, 2009, 53, 3501-3504, 10.1128/AAC.01620-08, reproduced with 

permission from American Society for Microbiology. 

 

 

Figure 6. Whole body gamma imaging of a patient with an extrapulmonary TB infection in the right knee 1h (a) 

and 4h (b) after injection of 555 MBq of 99mTc-DTPA-bis(INH) (c). (Image reproduced from Hazari et al.146) 

 

Figure 7. A healthy and M. tuberculosis infected mouse (A) injected IV with 5 nmole of compound 84 (C) 48 

post infection and injection. The lungs of the uninfected (upper) and infected (lower) mouse were scanned ex 

vivo for the presence of activated tracer 84 (B) (image taken from Kong et al.).182 
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Figure 8. Optical imaging (FMT-CT) of mice with endocarditis. Coagulase-positive S. aureus are present in the 

ascending aorta (a). Image taken 24 h after injection of 25 µg of prothrombin labeled with AF680 via an 

inhibitory peptide (b). (Reprinted by permission from Macmillan Publishers Ltd: Panizzi et al., Nature 

Medicine, 17, 9, 1142-1146, copyright 2011)  

 

Table 1. Prominent bacterial infections and their occurrence 

Disease Main bacterial cause Location Cases/year Ref 
Pulmonary Tuberculosis M. tuberculosis (+/-) Pulmonary 9.4 milliona 1 
Meningitis Various Brain and spinal cord 4.000b 3 
Infective endocarditis S. aureus (+) Heart 15.000b 4 
Fever of unknown origin Various Undefined   
Orthopedic infection (prosthetic) Mainly S. aureus (+) Prosthetic  700c 5 
Post-interventional infection S. aureus (+) Surgical wound 11.7 milliona 6 

a Global, bNorth-America, cUK 
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