2,729 research outputs found

    Genome-wide screen for genes involved in Caenorhabditis elegans developmentally timed sleep

    Get PDF
    In Caenorhabditis elegans, Notch signaling regulates developmentally timed sleep during the transition from L4 larval stage to adulthood (L4/A) . To identify core sleep pathways and to find genes acting downstream of Notch signaling, we undertook the first genome-wide, classical genetic screen focused on C. elegans developmentally timed sleep. To increase screen efficiency, we first looked for mutations that suppressed inappropriate anachronistic sleep in adult hsp::osm-11 animals overexpressing the Notch coligand OSM-11 after heat shock. We retained suppressor lines that also had defects in L4/A developmentally timed sleep, without heat shock overexpression of the Notch coligand. Sixteen suppressor lines with defects in developmentally timed sleep were identified. One line carried a new allele of goa-1; loss of GOA-1 Gαo decreased C. elegans sleep. Another line carried a new allele of gpb-2, encoding a Gβ5 protein; Gβ5 proteins have not been previously implicated in sleep. In other scenarios, Gβ5 GPB-2 acts with regulators of G protein signaling (RGS proteins) EAT-16 and EGL-10 to terminate either EGL-30 Gαq signaling or GOA-1 Gαo signaling, respectively. We found that loss of Gβ5 GPB-2 or RGS EAT-16 decreased L4/A sleep. By contrast, EGL-10 loss had no impact. Instead, loss of RGS-1 and RGS-2 increased sleep. Combined, our results suggest that, in the context of L4/A sleep, GPB-2 predominantly acts with EAT-16 RGS to inhibit EGL-30 Gαq signaling. These results confirm the importance of G protein signaling in sleep and demonstrate that these core sleep pathways function genetically downstream of the Notch signaling events promoting sleep

    Metformin Induces a Dietary Restriction–Like State and the Oxidative Stress Response to Extend C. elegans Healthspan via AMPK, LKB1, and SKN-1

    Get PDF
    Metformin, a biguanide drug commonly used to treat type-2 diabetes, has been noted to extend healthspan of nondiabetic mice, but this outcome, and the molecular mechanisms that underlie it, have received relatively little experimental attention. To develop a genetic model for study of biguanide effects on healthspan, we investigated metformin impact on aging Caenorhabditis elegans. We found that metformin increases nematode healthspan, slowing lipofuscin accumulation, extending median lifespan, and prolonging youthful locomotory ability in a dose-dependent manner. Genetic data suggest that metformin acts through a mechanism similar to that operative in eating-impaired dietary restriction (DR) mutants, but independent of the insulin signaling pathway. Energy sensor AMPK and AMPK-activating kinase LKB1, which are activated in mammals by metformin treatment, are essential for health benefits in C. elegans, suggesting that metformin engages a metabolic loop conserved across phyla. We also show that the conserved oxidative stress-responsive transcription factor SKN-1/Nrf2 is essential for metformin healthspan benefits in C. elegans, a mechanistic requirement not previously described in mammals. skn-1, which functions in nematode sensory neurons to promote DR longevity benefits and in intestines for oxidative stress resistance lifespan benefits, must be expressed in both neurons and intestines for metformin-promoted healthspan extension, supporting that metformin improves healthy middle-life aging by activating both DR and antioxidant defense longevity pathways. In addition to defining molecular players operative in metformin healthspan benefits, our data suggest that metformin may be a plausible pharmacological intervention to promote healthy human aging

    Normal sleep bouts are not essential for C. elegans survival and FoxO is important for compensatory changes in sleep

    Get PDF
    Additional file 6: Decreased lag-2 function does not slow vulval development. The progeny of wild type and lag-2(q420) animals raised at 25.5 °C were selected at the L4 stage, prior to lethargus entry. Vulval eversion was scored after 3 h; the percentage of animals completing vulval eversion was recorded. Significance was assessed by student’s two-tailed t-test p value < 0.5; error bars represents SEM from 3 trials. Total number of animals: wild type n = 45 and lag-2(q420) n = 42

    The HIF-1 Hypoxia-Inducible Factor Modulates Lifespan in C. elegans

    Get PDF
    During normal development or during disease, animal cells experience hypoxic (low oxygen) conditions, and the hypoxia-inducible factor (HIF) transcription factors implement most of the critical changes in gene expression that enable animals to adapt to this stress. Here, we examine the roles of HIF-1 in post-mitotic aging. We examined the effects of HIF-1 over-expression and of hif-1 loss-of-function mutations on longevity in C. elegans, a powerful genetic system in which adult somatic cells are post-mitotic. We constructed transgenic lines that expressed varying levels of HIF-1 protein and discovered a positive correlation between HIF-1 expression levels and lifespan. The data further showed that HIF-1 acted in parallel to the SKN-1/NRF and DAF-16/FOXO transcription factors to promote longevity. HIF-1 over-expression also conferred increased resistance to heat and oxidative stress. We isolated and characterized additional hif-1 mutations, and we found that each of 3 loss-of-function mutations conferred increased longevity in normal lab culture conditions, but, unlike HIF-1 over-expression, a hif-1 deletion mutation did not extend the lifespan of daf-16 or skn-1 mutants. We conclude that HIF-1 over-expression and hif-1 loss-of-function mutations promote longevity by different pathways. These data establish HIF-1 as one of the key stress-responsive transcription factors that modulate longevity in C. elegans and advance our understanding of the regulatory networks that link oxygen homeostasis and aging

    Are there functional consequences of a reduction in selenium intake in UK subjects?

    Get PDF
    Dietary Se levels in the UK have fallen over the last 20 years and recent surveys indicate that average Se intakes are 30-40 microg/d, which is well below the current UK reference nutrient intake for adult men (75 microg/d) or women (60 microg/d). Functional consequences of this decline have not been recognised, although epidemiological data suggest it may contribute to increased risk of infections and incidence of some cancers. Previous data have indicated that biochemical changes in Se-dependent proteins occur in otherwise healthy UK subjects given small Se supplements. The current studies have focused on the effect of small Se supplements on the immune response since there is evidence of specific interactions between Se intake and viral replication, and since the potential anti-cancer effects of Se may be mediated by non-antioxidant effects of Se such as changes in immune function. Data indicate that subjects given small Se supplements (50 or 100 microg Se/d) have changes in the activity of Se-dependent enzymes and evidence of improved immune function and clearance of an administered live attenuated virus in the form of poliovirus vaccine. Responses of individual subjects to Se supplements are variable, and current work is evaluating potential explanations for this variability, including genetic variability and pre-existing Se status

    Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration

    Get PDF
    Mutations in Cu/Zn superoxide dismutase 1 (SOD1) lead to Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease that disproportionately affects glutamatergic and cholinergic motor neurons. Previous work with SOD1 overexpression models supports a role for SOD1 toxic gain of function in ALS pathogenesis. However, the impact of SOD1 loss of function in ALS cannot be directly examined in overexpression models. In addition, overexpression may obscure the contribution of SOD1 loss of function in the degeneration of different neuronal populations. Here, we report the first single-copy, ALS knock-in models in C. elegans generated by transposon- or CRISPR/Cas9- mediated genome editing of the endogenous sod-1 gene. Introduction of ALS patient amino acid changes A4V, H71Y, L84V, G85R or G93A into the C. elegans sod-1 gene yielded single-copy/knock-in ALS SOD1 models. These differ from previously reported overexpression models in multiple assays. In single-copy/knock-in models, we observed differential impact of sod-1 ALS alleles on glutamatergic and cholinergic neurodegeneration. A4V, H71Y, G85R, and G93A animals showed increased SOD1 protein accumulation and oxidative stress induced degeneration, consistent with a toxic gain of function in cholinergic motor neurons. By contrast, H71Y, L84V, and G85R lead to glutamatergic neuron degeneration due to sod-1 loss of function after oxidative stress. However, dopaminergic and serotonergic neuronal populations were spared in single-copy ALS models, suggesting a neuronal-subtype specificity previously not reported in invertebrate ALS SOD1 models. Combined, these results suggest that knock-in models may reproduce the neurotransmitter-type specificity of ALS and that both SOD1 loss and gain of toxic function differentially contribute to ALS pathogenesis in different neuronal populations.Peer reviewe

    Cocaine Modulates Locomotion Behavior in C. elegans

    Get PDF
    Cocaine, a potent addictive substance, is an inhibitor of monoamine transporters, including DAT (dopamine transporter), SERT (serotonin transporter) and NET (norepinephrine transporter). Cocaine administration induces complex behavioral alterations in mammals, but the underlying mechanisms are not well understood. Here, we tested the effect of cocaine on C. elegans behavior. We show for the first time that acute cocaine treatment evokes changes in C. elegans locomotor activity. Interestingly, the neurotransmitter serotonin, rather than dopamine, is required for cocaine response in C. elegans. The C. elegans SERT MOD-5 is essential for the effect of cocaine, consistent with the role of cocaine in targeting monoamine transporters. We further show that the behavioral response to cocaine is primarily mediated by the ionotropic serotonin receptor MOD-1. Thus, cocaine modulates locomotion behavior in C. elegans primarily by impinging on its serotoninergic system

    A V-to-F Substitution in SK2 Channels Causes Ca2+ Hypersensitivity and Improves Locomotion in a \u3cem\u3eC. elegans\u3c/em\u3e ALS Model

    Get PDF
    Small-conductance Ca2+-activated K+ (SK) channels mediate medium afterhyperpolarization in the neurons and play a key role in the regulation of neuronal excitability. SK channels are potential drug targets for ataxia and Amyotrophic Lateral Sclerosis (ALS). SK channels are activated exclusively by the Ca2+-bound calmodulin. Previously, we identified an intrinsically disordered fragment that is essential for the mechanical coupling between Ca2+/calmodulin binding and channel opening. Here, we report that substitution of a valine to phenylalanine (V407F) in the intrinsically disordered fragment caused a ~6 fold increase in the Ca2+ sensitivity of SK2-a channels. This substitution resulted in a novel interaction between the ectopic phenylalanine and M411, which stabilized PIP2-interacting residue K405, and subsequently enhanced Ca2+ sensitivity. Also, equivalent valine to phenylalanine substitutions in SK1 or SK3 channels conferred Ca2+ hypersensitivity. An equivalent phenylalanine substitution in the Caenorhabditis elegans (C. elegans) SK2 ortholog kcnl-2 partially rescued locomotion defects in an existing C. elegans ALS model, in which human SOD1G85R is expressed at high levels in neurons, confirming that this phenylalanine substitution impacts channel function in vivo. This work for the first time provides a critical reagent for future studies: an SK channel that is hypersensitive to Ca2+ with increased activity in vivo
    corecore