3,548 research outputs found

    Measuring the hydrostatic mass bias in galaxy clusters by combining Sunyaev-Zel'dovich and CMB lensing data

    Full text link
    The cosmological parameters prefered by the cosmic microwave background (CMB) primary anisotropies predict many more galaxy clusters than those that have been detected via the thermal Sunyaev-Zeldovich (tSZ) effect. This tension has attracted considerable attention since it could be evidence of physics beyond the simplest Λ\LambdaCDM model. However, an accurate and robust calibration of the mass-observable relation for clusters is necessary for the comparison, which has been proven difficult to obtain so far. Here, we present new contraints on the mass-pressure relation by combining tSZ and CMB lensing measurements about optically-selected clusters. Consequently, our galaxy cluster sample is independent from the data employed to derive cosmological constrains. We estimate an average hydrostatic mass bias of b=0.26±0.07b = 0.26 \pm 0.07, with no significant mass nor redshift evolution. This value greatly reduces the tension between the predictions of Λ\LambdaCDM and the observed abundance of tSZ clusters while being in agreement with recent estimations from tSZ clustering. On the other hand, our value for bb is higher than the predictions from hydro-dynamical simulations. This suggests the existence of mechanisms driving large departures from hydrostatic equilibrium and that are not included in state-of-the-art simulations, and/or unaccounted systematic errors such as biases in the cluster catalogue due to the optical selection.Comment: 4 pages, 3 figure

    Structural stability of the two-fold singularity

    Get PDF
    At a two-fold singularity, the velocity vector of a flow switches discontinuously across a codimension one switching manifold, between two directions that both lie tangent to the manifold. Particularly intricate dynamics arises when the local flow curves toward the switching manifold from both sides, a case referred to as the Teixeira singularity. The flow locally performs two different actions: it winds around the singularity by crossing repeatedly through, and passes through the singularity by sliding along, the switching manifold. The case when the number of rotations around the singularity is infinite has been analyzed in detail. Here we study the case when the flow makes a finite, but previously unknown, number of rotations around the singularity between incidents of sliding. We show that the solution is remarkably simple: the maximum and minimum numbers of rotations made anywhere in the flow differ only by one and increase incrementally with a single parameter -the angular jump in the flow direction across the switching manifold at the singularity

    Direct measurement of the 14N(p,g)15O S-factor

    Full text link
    We have measured the 14N(p,g)15O excitation function for energies in the range E_p = 155--524 keV. Fits of these data using R-matrix theory yield a value for the S-factor at zero energy of 1.64(17) keV b, which is significantly smaller than the result of a previous direct measurement. The corresponding reduction in the stellar reaction rate for 14N(p,g)15O has a number of interesting consequences, including an impact on estimates for the age of the Galaxy derived from globular clusters.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Let

    The Birth and Growth of Neutralino Haloes

    Full text link
    We use the Extended-Press-Schechter (EPS) formalism to study halo assembly histories in a standard Λ\LambdaCDM cosmology. A large ensemble of Monte Carlo random walks provides the {\it entire} halo membership histories of a representative set of dark matter particles, which we assume to be neutralinos. The first generation halos of most particles do not have a mass similar to the free-streaming cut-off Mf.s.M_{f.s.} of the neutralino power spectrum, nor do they form at high redshift. Median values are M1=105M_1 = 10^5 to 107Mf.s.10^7M_{f.s.} and z1=13z_1 = 13 to 8 depending on the form of the collapse barrier assumed in the EPS model. For almost a third of all particles the first generation halo has M1>109Mf.s.M_1>10^9M_{f.s.}. At redshifts beyond 20, most neutralinos are not yet part of any halo but are still diffuse. These numbers apply with little modification to the neutralinos which are today part of halos similar to that of the Milky Way. Up to 10% of the particles in such halos were never part of a smaller object; the typical particle has undergone 5\sim 5 "accretion events' where the halo it was part of falls into a more massive object. Available N-body simulations agree well with the EPS predictions for an "ellipsoidal" collapse barrier, so these may provide a reliable extension of simulation results to smaller scales. The late formation times and large masses of the first generation halos of most neutralinos imply that they will be disrupted with high efficiency during halo assembly.Comment: 7 pages, 7 figure

    Synchronous vs Asynchronous Chain Motion in α-Synuclein Contact Dynamics

    Get PDF
    α-Synuclein (α-syn) is an intrinsically unstructured 140-residue neuronal protein of uncertain function that is implicated in the etiology of Parkinson’s disease. Tertiary contact formation rate constants in α-syn, determined from diffusion-limited electron-transfer kinetics measurements, are poorly approximated by simple random polymer theory. One source of the discrepancy between theory and experiment may be that interior-loop formation rates are not well approximated by end-to-end contact dynamics models. We have addressed this issue with Monte Carlo simulations to model asynchronous and synchronous motion of contacting sites in a random polymer. These simulations suggest that a dynamical drag effect may slow interior-loop formation rates by about a factor of 2 in comparison to end-to-end loops of comparable size. The additional deviations from random coil behavior in α-syn likely arise from clustering of hydrophobic residues in the disordered polypeptide

    Implementation of a 10.24 GS/s 12-bit Optoelectronics Analog-to-Digital Converter Based on a Polyphase Demultiplexing Architecture

    Get PDF
    AbstractIn this paper we present the practical implementation of a high-speed polyphase sampling and demultiplexing architecture for optoelectronics analog-to-digital converters (OADCs). The architecture consists of a one-stage divide-by-eight decimator circuit where optically-triggered samplers are cascaded to sample an analog input signal, and demultiplex different phases of the sampled signal to yield low data rate for electronic quantization. Electrical-in to electrical-out data format is maintained through the sampling, demultiplexing and quantization processes of the architecture thereby avoiding the need for electrical-to-optical and optical-to-electrical signal conversions. We experimentally demonstrate a 10.24 giga samples per second (GS/s), 12-bit resolution OADC system comprising the optically-triggered sampling circuits integrated with commercial electronic quantizers. Measurements performed on the OADC yielded an effective bit resolution (ENOB) of 10.3 bits, spurious free dynamic range (SFDR) of -32 dB and signal-to-noise and distortion ratio (SNDR) of 63.7 dB

    Analysis of the capability of cork and cork agglomerates to absorb multiple compressive quasi-static loading cycles

    Get PDF
    Despite the higher specific mechanical properties and the lower density of polymeric foams, these materials present cumulative damage behaviour that implies in the second and successive impacts, their mechanical properties decrease drastically. However, cork and cork agglomerates have the ability to absorb multiple impacts so they could be a more suitable material in some products, such as bumpers and helmets. This article is focused on the study of five different cork agglomerates and a natural cork under four different maximum deformations subjected to four consecutive compression loading cycles. Main diagrams, such as the stress–strain, energy density and efficiency, and the variation in diverse parameters, such as the absorbed energy density and maximum efficiency, were investigated and compared with an expanded polystyrene foam

    Configuration Complexities of Hydrogenic Atoms

    Full text link
    The Fisher-Shannon and Cramer-Rao information measures, and the LMC-like or shape complexity (i.e., the disequilibrium times the Shannon entropic power) of hydrogenic stationary states are investigated in both position and momentum spaces. First, it is shown that not only the Fisher information and the variance (then, the Cramer-Rao measure) but also the disequilibrium associated to the quantum-mechanical probability density can be explicitly expressed in terms of the three quantum numbers (n, l, m) of the corresponding state. Second, the three composite measures mentioned above are analytically, numerically and physically discussed for both ground and excited states. It is observed, in particular, that these configuration complexities do not depend on the nuclear charge Z. Moreover, the Fisher-Shannon measure is shown to quadratically depend on the principal quantum number n. Finally, sharp upper bounds to the Fisher-Shannon measure and the shape complexity of a general hydrogenic orbital are given in terms of the quantum numbers.Comment: 22 pages, 7 figures, accepted i

    Simultaneous Border-Collision and Period-Doubling Bifurcations

    Full text link
    We unfold the codimension-two simultaneous occurrence of a border-collision bifurcation and a period-doubling bifurcation for a general piecewise-smooth, continuous map. We find that, with sufficient non-degeneracy conditions, a locus of period-doubling bifurcations emanates non-tangentially from a locus of border-collision bifurcations. The corresponding period-doubled solution undergoes a border-collision bifurcation along a curve emanating from the codimension-two point and tangent to the period-doubling locus here. In the case that the map is one-dimensional local dynamics are completely classified; in particular, we give conditions that ensure chaos.Comment: 22 pages; 5 figure
    corecore