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STRUCTURAL STABILITY OF THE TWO-FOLD SINGULARITY

S. FERNÁNDEZ-GARCÍA∗
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Abstract. At a two-fold singularity, the velocity vector of a flow switches discontinuously across
a codimension one switching manifold, between two directions that both lie tangent to the manifold.
Particularly intricate dynamics arises when the local flow curves towards the switching manifold
from both sides, a case referred to as the Teixeira singularity. The flow locally performs two different
actions: it winds around the singularity by crossing repeatedly through, and passes through the
singularity by sliding along, the switching manifold. The case when the number of rotations around
the singularity is infinite has been analysed in detail. Here we study the case when the flow makes
a finite – but previously unknown – number of rotations around the singularity between incidents
of sliding. We show that the solution is remarkably simple: the maximum and minimum number of
rotations made anywhere in the flow differs only by one, and increases incrementally with a single
parameter: the angular jump in the flow direction across the switching manifold, at the singularity.
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1. Introduction. Piecewise-smooth dynamical systems continue to find increas-
ing application in modelling stick-slip and impact in rigid body mechanics, switching
in electrical control circuits and robotics, temperature dynamics in the phase transi-
tions of superconductors, as well as numerous other biophysical, ecological and indus-
trial problems; see for example [1, 2, 4, 7, 11, 14, 15]. Any of these contain examples
of piecewise-smooth systems of the general class discussed here, namely three dimen-
sional flows whose time derivative is discontinuous across a hypersurface or switching
manifold, while the flow itself is continuous.

Two-fold singularities in such systems were first described by Filippov [6]. At a
two-fold, the flow lies tangent to both sides of the switching manifold, but its mag-
nitude and direction tangent to the manifold are discontinuous. Filippov highlighted
the fact that, while two-folds should appear under generic conditions, one particular
type seemed to be structurally unstable, meaning that any small change to its de-
scription would result in qualitatively different dynamics. In this case, the flow curves
towards the switching manifold from both sides, as depicted in figure 1.1. Intrigue
grew with Teixeira’s continued study of its structural and asymptotic stability [12],
and this case became known as the Teixeira singularity. The difficulties of marrying
the two-fold’s genericity with its structural instability, and the realisation that the
two-fold provides a route to robust non-deterministic dynamics [3], create a need to
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understand its possible role in applications. This, in turn, requires a few gaps in the
classification of its dynamics to be filled.

U C−

S
C+

Fig. 1.1. The Teixeira singularity. The switching manifold divides into regions where the flow slides
along it (double arrows in shaded regions), one region stable (S) and the other unstable (U), and regions
where the flow crosses through (C±). The boundaries between crossing and sliding are the folds, where
the flow is tangent to the manifold. The folds intersect at a point, called the Teixeira singularity (a special
class of two-fold singularity).

Through [6, 9, 12], various structurally stable classes of Teixeira singularity, and
the bifurcations between different classes, were identified, leading to a detailed pic-
ture of the local dynamics. The singularity is never a global attractor or repeller,
but rather a two-way channel between disjoint domains in which the switching man-
ifold attracts or repels the surrounding flow, and around which the flow can wind,
sometimes intricately.

Yet there remains a missing piece in the puzzle of the Teixeira singularity’s struc-
tural stability. It was shown in [9] that the local dynamics depends crucially upon a
single quantity: the jump in the flow’s direction through the switching manifold at
the singularity. This jump determines whether the flow winds around the Teixeira
singularity “at most once”, “at least once”, or “infinitely many times”, between in-
stances of sliding. The topological stability of these classes under perturbation was
described in [3]. The remaining obstruction to fully establishing the stable topologies
of the two-fold lies in the phrase “at least once”. In what manner does the number
of rotations increase from one to infinity? Does this take place through a series of
well defined bifurcations, between which structural stability is restored? Do regions
of existence for different rotation numbers overlap? And so on.

The vector field in a sufficiently small neighbourhood of the Teixeira singularity
is approximated by a normal form now familiar from [3, 6, 9, 12] (the validity of which
can also be seen in examples simulated in [3]). For this local model, we show here that
the number of rotations the flow makes around the singularity can be expressed in a
closed form. It depends on a single parameter, namely the angle through which the
flow jumps across the switching manifold. We equate a ratio of the tangents of the
angles between the flow’s direction and the two folds at the singularity, to a function
cos2 π

r+1 , where r > 1. Then the number of times any orbit in the flow crosses the
switching manifold is given by k = r when r is an integer, or by the integers k and
k + 1 either side of r otherwise. Any number of crossings k corresponds to the flow
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making (k+1)/2 rotations around the singularity between visits to the sliding regions.
The paper is set out as follows. In section 2 the Teixeira singularity is defined.

In section 3 we classify its local dynamics using previous results, and add a Theorem
regarding rotation numbers in the flow. In section 4 we recall the local normal form,
and derive its dynamics in the Filippov convention in section 5. In section 6 we prove
the main Theorem and its Corollary, and illustrate the results with some simulations
in section 7, with some concluding remarks in section 8.

2. The Teixeira singularity. For some variable x ∈ R
3 changing with time

t, let the velocity vector dx/dt take different values ∂t+x or ∂t−x depending on the
sign of some smooth scalar function h(x). This defines a piecewise-smooth flow along
which the time derivative operator can be written as

d

dt
=

{

∂t+ if h(x) > 0,
∂t− if h(x) < 0,

(2.1)

and the surface h = 0 is called the switching manifold. The operators ∂t± are Lie
derivatives along smooth flows either side of h(x) = 0, introduced in more depth in
the Appendix.

A two-fold singularity is defined as a point x̂ where,

h(x̂) = ∂t+h(x̂) = ∂t−h(x̂) = 0,(2.2)

subject to non-degeneracy conditions

∂2
t±h(x̂) 6= 0,(2.3)

det [∂xh(x̂), ∂x∂t+h(x̂), ∂x∂t−h(x̂)] 6= 0,(2.4)

where ∂x is the gradient operator with respect to x. These conditions are discussed in
[3, 6, 9, 12], but let us briefly review how they lead to the geometry in figure 1.1. A fold
is a set of points that satisfy ∂t+h(x) = h(x) = 0 or ∂t−h(x) = h(x) = 0, meaning the
flow is tangent to the switching manifold from above or below respectively, and such
points form curves on the switching manifold. Non-degeneracy conditions ∂2

t+h 6= 0
or ∂2

t−h 6= 0 (attached to ∂t+h = 0 or ∂t−h = 0 respectively) ensure that the order of
the tangency is quadratic, and not higher. Therefore (2.2) defines a point where the
flow is tangent to both sides of the switching manifold simultaneously, while condition
(2.3) ensures these are both of quadratic order. The point x̂ therefore lies at the
intersection of two curves of folds, and condition (2.4) ensures that the intersection is
transversal.

The flow’s local curvature is characterized by the second Lie derivatives of h. In
particular, the dynamics at a two-fold depends critically upon two quantities,

v+ =
∂t+∂t−h(x̂)

√

−(∂2
t+h(x̂))(∂

2
t−h(x̂))

, v− =
−∂t−∂t+h(x̂)

√

−(∂2
t+h(x̂))(∂

2
t−h(x̂))

.(2.5)

A Teixeira singularity is a specific type of two-fold where the flow curves towards the
switching manifold from both sides, meaning that the second Lie derivatives satisfy

∂2
t+h(x̂) < 0 < ∂2

t−h(x̂),(2.6)

therefore v± are real-valued and finite.
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To study the dynamics of a flow with time derivative (2.1), it is necessary to
extend this expression to the switching manifold, h(x) = 0. A general method of
restoring continuity at h = 0 was given by Filippov [6]. A convex combination of ∂t±
provides a differential inclusion,

d

dt
∈ ∂tλ = λ∂t+ + (1− λ)∂t−, λ ∈







1 if h(x) > 0,
[0, 1] if h(x) = 0,
0 if h(x) < 0.

(2.7)

It is then possible to define a flow along which the time derivative is given everywhere
by (2.7), for some λ. The flow through any given point is continuous, but not neces-
sarily unique, some consequences of which are explored in [3, 8] but are not of concern
here.

3. Dynamical classification: the role of v±. Fortunately, analysing the dy-
namics of the Teixeira singularity is simpler than considering the differential inclusion
(2.7), and reduces to two kinds of dynamics at the switching manifold, sliding (shaded
regions in figure 1.1) and crossing (unshaded regions in figure 1.1). At a point where

(∂t+h(x)) (∂t−h(x)) > 0 and h(x) = 0,(3.1)

the component of the flow velocity normal to the switching manifold, ∂tλh(x), has
the same sign for all λ as given by (2.7). The flow is then said to cross the switching
manifold (giving the regions C± in figure 1.1). If the velocity normal to h = 0 changes
direction across the switching manifold,

(∂t+h(x)) (∂t−h(x)) < 0 and h(x) = 0,(3.2)

then (2.7) admits a velocity vector ∂tsx ∈ ∂tλx, given by

∂ts =
∂t−h

(∂t− − ∂t+)h
∂t+ +

(

1− ∂t−h

(∂t− − ∂t+)h

)

∂t−,(3.3)

that lies tangent to the manifold. This defines a flow that slides along the switching
manifold. Since ∂t+h and ∂t−h do not vanish by (3.2), the flow from outside the
switching manifold reaches or departs the sliding regions in finite time (defining the
regions S and U respectively in figure 1.1). The attracting regions (where ∂t+h < 0 <
∂t−h) are known as stable sliding, and the repelling regions (where ∂t−h < 0 < ∂t+h)
as unstable sliding (sometimes called ‘escaping’).

Thus the switching manifold is divided into regions of crossing given by (3.1), and
regions of sliding given by (3.2). In [9] the following was proven with regard to sliding
dynamics.

Theorem 1 In the sliding regions local to the Teixeira singularity,
(i) a unique orbit passes from unstable sliding to stable sliding if v+ > 0 or

v− > 0;
(ii) a unique orbit passes from unstable sliding to stable sliding if v± < 0 and

v+v− < 1;
(iii) every orbit passes from stable sliding to unstable sliding if v± < 0 and v+v− >

1;
and in each of (i) − (iii), passage between sliding regions is made directly via the
singularity (i.e. without leaving the switching manifold).
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The phase portraits responsible for this are shown in the shaded regions in fig-
ure 3.1(b), but since sliding is not the main concern of this paper we will not discuss
these in detail. The following was also proven in [9] concerning crossing dynamics.

Theorem 2 Between visits to the sliding regions, local to the Teixeira singularity,
every orbit crosses the switching manifold:

(i) at most once from h < 0 to h > 0 if v+ > 0, and
at most once from h > 0 to h < 0 if v− > 0;

(ii) at least once if v± < 0 and v+v− < 1;
(iii) infinitely many times if v± < 0 and v+v− > 1.
The number of crossings given by this theorem are illustrated in figure 3.1(a),

forming a classification in the space of parameters v±. In the unshaded regions in
figure 3.1(b), phase portraits are shown that depict the return maps generated by the
flow through the crossing regions.

Theorem 1 case (ii) inhabits the shaded region in figure 3.1(a), where the exact
number of crossings for any given v± has not previously been described. As we show
in section 6, this is resolved by the following theorem (the normal form referred to
below will be described in section 4):

Theorem 3. If v+v− = cos2 π
k+1 where k ≥ 2 is an integer, and v± are negative, then

between visits to the sliding regions in the Teixeira singularity normal form system,
any orbit crosses the switching manifold exactly k times.

Corollary to Theorem 3. If v+v− = cos2 π
r+1 and r > 1 is not an integer, and v± are

negative, then between visits to the sliding regions in the Teixeira singularity normal
form:

1. any orbit crosses the switching manifold either k or k+1 times, where k and
k + 1 are the integers either side of r; and

2. in normal form coordinates x = (x, y, z) where x = 0 is the switching mani-
fold, on which y = 0 and z = 0 are the folds, the number of crossings made by
a solution passing through a point (0, y0, z0) changes across four lines, given
by y0 = 0, z0 = 0, z0 = y0Γ

+
(k+1)/2, and y0 = z0Γ

−
(k+1)/2, in terms of functions

Γ±
m = v±/Gm(arccos

√
v+v−),

and Gm(θ) = sin ([2m− 1]θ) cos θ/sin(2mθ).

4. Local normal form. The derivative (2.1) defines a flow whose velocity is
expressible as

d

dt
x =

{

f+(x) if h(x) > 0,
f−(x) if h(x) < 0,

(4.1)

where f± : R3 7→ R
3 are smooth, and f± = ∂t±x or ∂t± = f± · ∂x.

The local dynamics can be studied almost entirely in the switching manifold, so it
is useful to choose the first coordinate of x such that the switching manifold is given
by x = 0. The two other coordinates, say y and z, can be chosen so that ∂t+h(x) and
∂t−h(x) vanish at y = 0 and z = 0 respectively, giving a local normal form for the
Teixeira singularity (2.2) with a vector field (4.1) in which

h(x) = x, f+(x) =





−y
1
v+



 , f−(x) =





z
v−

1



 ,(4.2)
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k=0,1,2

k=1,2k=2 or 3
k=3 or 4...

k=0,1,2

k finite

k=∞

k=∞
k=3, θ=̟/4

k=2, θ=̟/3

k=∞, θ=0

k=4, θ=̟/5
...

k=0,1

v−

v+

(b)(a) cases
(i)-(ii)

case
(iii)

C+

C−U

S

C+

C−U

S

Fig. 3.1. Bifurcation diagram of the Teixeira singularity, showing: (a) k, the number of times any
orbit crosses the switching manifold for different v±; and (b) the corresponding phase portraits of the
crossing maps (in crossing regions C±) and sliding flow (in sliding regions S [stable] and U [unstable],
shaded). This paper concerns the shaded region in (a). On each of the curves v+v− = cos2 θπ/(k + 1)
for integer k, the entire flow maps U onto S via k crossings. In between, the number of crossings of the
two bounding curves are permitted.

(for more details of the derivation and generality of this, see [3]). In this form, the
constants v± measure the tangents of the angles θ±, between the vector fields f± and
the z-direction,

v+ =
f+ · ∂xy
f+ · ∂xz

= tan θ+, v− =
f− · ∂xy
f− · ∂xz

=
1

tan θ−
,

and their product is given by

v+v− = tan θ+/ tan θ−,

which was referred to in the introduction as the ‘ratio of tangents’.

5. Dynamics on the switching manifold. In this section, we derive the basic
expressions that prescribe sliding and crossing dynamics local to the two-fold.

It is important to note that the singularity is not generically a fixed point of
the flow [3, 9]. Therefore, while the local vector field in a general flow is given by
the normal form (4.2) in a sufficiently small neighbourhood of the singularity, any
solution will leave such a neighbourhood after sufficient time, whereupon higher order
terms may become important. Since much of the intrigue surrounding the Teixeira
singularity stems from the properties of its normal form alone, this is our sole interest
here. Hence the expressions in this section, and the main results derived in section 6,
apply strictly to the normal form system (4.2).

5.1. Sliding dynamics. Sliding occurs where the components of f± normal to
the switching manifold have opposite signs. Substituting (4.2) into (3.2), the sliding
regions in the normal form are given by

S =
{

(x, y, z) ∈ R
3 : x = 0, y, z > 0

}

,

U =
{

(x, y, z) ∈ R
3 : x = 0, y, z < 0

}

,

where stable and unstable sliding occur respectively (see figure 1.1).
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The time derivative (3.3) generates sliding motion in S and U , given by the
element of (3.3) that lies tangent to the switching manifold (see [6]), which is

∂ts

(

y
z

)

=
z

y + z

(

1
v+

)

+

(

1− z

y + z

)(

v−

1

)

=
1

y + z

(

z + yv−

y + zv+

)

.(5.1)

This is undefined at the singularity, where y = z = 0. A local phase portrait can be
obtained, however, by neglecting the singular prefactor 1/(y+ z), and considering the
planar vector field

(

z + yv−

y + zv+

)

,

which has a linear equilibrium at the origin. The trace (v+ + v−) and determinant
(v+v− − 1) of this vector field’s Jacobian derivative classify the equilibrium as a
focus, node, or saddle. Re-inserting the prefactor yields the local phase portraits in
figure 3.1(b), which have appeared in varying forms in [3, 6, 9, 13]. These are not of
concern here and are recalled only for completeness.

5.2. Crossing dynamics. The flow crosses through the switching manifold
when the components of f± normal to x = 0 have the same sign. Substituting (4.2)
into (3.1), the crossing regions in the normal form are given by

C+ =
{

(x, y, z) ∈ R
3 : x = 0, y < 0 < z

}

,

C− =
{

(x, y, z) ∈ R
3 : x = 0, z < 0 < y

}

,

where the flow crosses in the positive or negative x directions respectively. The flow
outside x = 0 is comprised of arcs given by

(x, y, z) =

{ (

1
2 (y

2
0 − y2), y, z0 + v+(y − y0)

)

for |y| < |y0|,
(

1
2 (z

2 − z20), y0 + v−(z − z0), z
)

for |z| < |z0|,(5.2)

where each arc leaves the switching manifold from coordinates (0, y0, z0), and travels
through x > 0 returning to (0,−y0, z0 − 2v+y0), or through x < 0 returning to
(0, y0 − 2v−z0,−z0) through x < 0.

Letting y denote a two-dimensional column vector with components (y, z), we can
thus define a pair of maps, φ±, that take any point ym to its first return coordinate
ym+1 on x = 0, given by

ym+1 = φ+(ym) = B+ym, B+ =

(

−1 0
−2v+ 1

)

,(5.3)

ym+1 = φ−(ym) = B−ym, B− =

(

1 −2v−

0 −1

)

.(5.4)

The maps φ± obey

φ+ : U ∪ C+ 7→ S ∪ C−, φ− : U ∪ C− 7→ S ∪ C+.(5.5)

The domain of φ± and range of φ∓ overlap on C±, on which we can compose φ+ and
φ− to define second return maps

ym+2 = φ− ◦ φ+(ym) = A+ym, A+ = B−B+,(5.6)

ym+2 = φ+ ◦ φ−(ym) = A−ym, A− = B+B−,(5.7)
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such that

φ− ◦ φ+ : U ∪ C+ 7→ S ∪ C+, φ+ ◦ φ− : U ∪ C− 7→ S ∪ C−.(5.8)

These second returns maps have been studied in various forms in [6, 9, 12]. The
solutions to the difference equations ym = A±ym−2 have not, however, been studied
explicitly. They are clearly given by

y2m = (φ− ◦ φ+)m(y0) = (A+)my0,(5.9)

y2m = (φ+ ◦ φ−)m(y0) = (A−)my0,(5.10)

and a little trigonometry using the substitution v+v− = cos2 θ provides

(A±)m =
sin[2mθ]

sin 2θ
A± − sin[2(m− 1)θ]

sin 2θ
I,(5.11)

where I denotes the 2× 2 identity matrix.
Two properties of the maps φ± were exploited in [9] to simplify the crossing map.

First, the expressions in (5.3) and (5.4) are similar up to the transformation

(y, z, v±) 7→ (z, y, v∓).(5.12)

It is therefore sufficient to study the map in (5.9), and infer the corresponding results
for (5.10) (or vice versa) by applying the transformation (5.12).

The second property to be exploited is that φ+ and φ− map straight lines through
the singularity to each other. It is therefore sufficient to study the angles of points
relative to the folds y = 0 and z = 0, as the matrices A± rotate them around the
singularity. Given a point yi with components (yi, zi), we define its tangent relative
to the folds by

T2m =
z2m
y2m

, T2m+1 =
y2m+1

z2m+1
, m ∈ Z,(5.13)

depending on whether i is even (i = 2m) or odd (i = 2m+1). Then Tm is positive for
points ym in the sliding regions (yz > 0), negative in the crossing regions (yz < 0),
and either zero or infinite on the folds (yz = 0). We thus denote the sets of tangent
values T of points in U, S and C±, by

TU = TS = (0,∞), TC+ = TC− = (−∞, 0).(5.14)

Substituting (5.6)-(5.7) into (5.13), we find that the tangents Ti map as

T2m+2 =
(

T2m − 2v+
)

/
(

1 + 2v−T2m − 4v+v−
)

,(5.15)

T2m+1 =
(

T2m−1 − 2v−
)

/
(

1 + 2v+T2m−1 − 4v+v−
)

.(5.16)

These second return ‘tangent maps’ were studied in [9], but again, their solutions as
difference equations have not been studied explicitly. Substituting in (5.9)-(5.11), the
solutions are found to be given by

T2m =
v+ − T0Gm(θ)

2v+v− −Gm(θ)− v−T0
,(5.17)

(with a similar equation for T2m+1 following by (5.12)), using again the quantity
θ = arccos

√
v+v− as in (5.11), and introducing the function

Gm(θ) =
sin[(2m− 1)θ]

sin[2mθ]
cos θ.(5.18)

The tangent map T0 7→ T2m given by (5.17) is the main focus of this paper.
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6. Structure of the region v± < 0, v+v− < 1. In this section we prove the
Theorem and Corollary from section 3. We assume throughout this section that v±

are negative and v+v− < 1. We will derive results that are exact for the normal form
(4.2), and more generally hold in a small enough neighbourhood of the singularity.

The theorem is proven by considering how U maps under the action of φ+ and φ−.
Without loss of generality we apply φ+ to a point y0 ∈ U (corresponding results for φ−

applied to y0 ∈ U are given by the similarity transformation (5.12)). The subsequent
orbit consists of crossing points y1,y3, ...ym−1 ∈ C− and y2,y4, ...ym−2 ∈ C+ for
some integer m, following the convention in [9] that even iterates y2m lie in the
domain of φ+, while odd iterates y2m+1 lie in the domain of φ−. We then have two
cases: either y2m ∈ S, giving an orbit with an odd number of crossings k = 2m−1, or
y2m ∈ C+ and y2m+1 ∈ S, giving an orbit with an even number of crossings k = 2m.

We find that, for certain values of the product v+v−, the boundaries of U are
mapped exactly onto the boundaries of S, and take the same number of crossings (the
number of iterates in C±) to do so. By implication since the maps φ± are linear, all
points in U are then mapped into S via the same number of crossings.

Proof of Theorem 3. Let v+v− = cos2 π
k+1 where k is an integer, and let πk = π

k+1 . If
y0 lies on the boundary of U then T0 = 0 or T0 = ∞, then a little algebra gives the
tangent of a subsequent point y2m as

T2m|T0=0 =
sin[2mπk] cosπk

sin[(2m+ 1)πk]v−
=

1

v−
Gm+ 1

2
(πk),(6.1)

T2m|T0=∞ =
sin[(2m− 1)πk] cosπk

sin[2mπk]v−
=

1

v−
Gm(πk).(6.2)

Let us now take a point y0 ∈ U with tangent T0 ∈ TU , and consider the map y0 7→
y2m = (φ− ◦ φ+)m(y0) which sends T0 7→ T2m.

Assuming k ≥ 2, we must consider two cases:
• If k is odd let k = 2m− 1, then if y0 lies on the boundary of U , by (6.1)-(6.2)
the point y2m = (φ− ◦ φ+)m(y0) has tangent T2m|T0=0 = 0 or T2m|T0=∞ =
±∞ and hence lies on the boundary of S. Since the map is linear this implies
that y2m = (φ−◦φ+)m(y0) ∈ S for any y0 ∈ U . By applying (5.15)-(5.16), the
iterate y2m−1 has tangent T2m−1 ∈ (−∞, 2v−) ⊂ TC− , and is therefore the
last in a sequence of crossing points y1,3,...,2m−1 ∈ C− and y2,4,...,2m−2 ∈ C+,
which number 2m− 1 in total; see figure 6.1(ii).

• If k is even let k = 2m, then for a point y0 on the boundary of U , (6.1)
and (6.2) give T2m|T0=0 = ±∞ and T2m|T0=∞ = 2v+, and therefore by
linearity, y2m belongs to a sequence of crossing points y1,3,...,2m−1 ∈ C− and
y2,4,...,2m ∈ C+. One further application of φ+ sends T2m ∈ (−∞, 2v+) to
T2m+1 ∈ (0,∞) = TS , so the same map sends the boundaries of U to the
boundaries of S, and any y0 ∈ U to y2m+1 = φ+ ◦ (φ− ◦φ+)m(y0) ∈ S. Thus
there are 2m crossing points in total; see figure 6.1(i).

In both cases the entire neighbourhood of the singularity consists of orbits that connect
U to S via a number of crossings k = 2m or k = 2m − 1, where k is fixed by the
quantity v+v− = cos2 π

k+1 . Finally, applying the similarity transformation (5.12),
which reflects the topology in figure 6.1 in the line y = z, trivially yields the same
result when φ− instead of φ+ is applied first on U . �

Proof of Corollary 4. In the theorem above, the boundaries of U map exactly onto
the boundaries of S, and v+v− = cos2 π

k+1 where k is an integer. An immediate
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T2m+1

T0 T1

T=1/2v+ T=1/2v+

T=2v+

T=2v-

T2

T2i

T2i−1

T=0
y

z
T=−∞

T2m

T2

T2i
T2m

k=2m k=2m−1

T0 T1
T2i−1

T=0

S

U

C+

C−

S

U
U ’ U ’

S ’

S ’

C+

C−

y

z
T=−∞

T2m−1

Fig. 6.1. Figure showing: U is the domain of T0, U ′ = φ+(U) = (−∞, 1/2v+) is the region where
the first crossing occurs. S′ = (2v± , 0) is the region where the last crossing occurs, and is given by
φ+(S′) = S in the left figure, and φ−(S′) = S in the right figure. There are k = 2m crossings in the
left figure and k = 2m − 1 in the right, for integer m and k ≥ 2.

consequence of this is that if v+v− = cos2 π
r+1 for non-integer r, then the number of

crossing points in the flow can only take the integer values immediately either side
of r. To prove this explicitly we consider the orbits that map from inside U to the
boundary of S, and from the boundary of U to the interior of S. When these orbits
are perturbed they undergo a change in the number of crossing points they contain:
if we move from a point yi with Ti > 0 to one with Ti < 0 at the boundary of U , it
changes from a starting point in U , to a crossing point in C+. Thus immediately we
have that the number of crossing points increases by one as we go from an orbit with
T0 ∈ TU to a nearby orbit with T0 ∈ C+, passing through T0 = 0.

It remains to consider orbits that are mapped onto the boundaries of S. Let us
assume the zeroth iterate y0 to be either the start point of an orbit such that y0 ∈ U ,
or to be the first crossing point of an orbit such that y0 = φ−(y−1) ∈ C+ for some
y−1 ∈ U . In the first case we have T0 ∈ TU , and in the second case, applying (5.3)-
(5.4) gives T0 ∈ (1/2v−, 0), recalling that v− is negative. Likewise, we will assume
that some later iterate yi is either the end point yi ∈ S, or the last crossing point
yi ∈ C+ such that yi+1 = φ+(yi) ∈ S. In the first case Ti ∈ TS , and in the second
case (5.3)-(5.4) gives Ti ∈ (−∞, 2v+), recalling that v+ is negative. We refer to a
complete orbit as having a starting point y0 or y−1 in U , and an endpoint yi or yi+1

in S, for some i.
Let us now find the value of T0 for which Ti lies on the boundary of TS , where yi

changes from a crossing point to an end point. Solving T2m|T0
= 0 and T2m|T0

= ±∞
from (5.17) for some integer m, we find

T2m|T0
= 0 ⇒ T0 = Γm,

T2m|T0
= ±∞ ⇒ T0 = Γm+ 1

2
,

where Γm =
v+

Gm(θ)
,

recalling that θ = arccos
√
v+v− by definition. Now let θ be equal to πr = π

r+1 for
some r > 0, and assume that k < r < k+1. Let us assume k is odd and let k = 2m−1
for some integer m. For the quantity Γm it follows that

1

2v−
< Γm < 0 < Γm+ 1

2
.(6.3)

Recall that we allow either T0 ∈ (1/2v−, 0) ⊂ TC+ or T0 ∈ (0,∞) = TU . Then (6.3)
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T=Γ
0
=0

T=Γm

T=1/2v− T=2v+

T=Γm+½

y

z

2m−1

2m−1

2m

2m

U

S

C+U ’

Fig. 6.2. Number of crossings for 2m− 1 < r < 2m is k = 2m or k = 2m− 1, m ∈ Z, alternating
as the iterate T0 crosses the tangent values Tδk. To obtain the case 2m < r < 2m+1 just substitute m
with m + 1

2
.

partitions this range of T0 values into four different regions:

• if T0 ∈ ( 1
2v− ,Γm) ⊂ TC+ then T2m−2 ∈ (−∞, 2v+) ⊂ TC+ from (5.17).

Moreover y0 = φ−(y−1) for some y−1 ∈ U , and φ+ ◦ (φ− ◦ φ+)m−1(y0) ∈ S,
so the complete orbit y−1 7→ φ+ ◦ (φ− ◦ φ+)m−1(y0) has 2m − 1 crossing
points y0,1,...,2m−2 ∈ C±;

• if T0 ∈ (Γm+ 1
2
, 0) ⊂ TC+ then T2m ∈ (0,∞) = TS from (5.17). Moreover y0 =

φ−(y−1) for some y−1 ∈ U , so the complete orbit y−1 7→ (φ− ◦ φ+)m−1(y0)
has 2m crossing points y0,1,...,2m−1 ∈ C±;

• if T0 ∈ (0,Γm+ 1
2
) ⊂ TU then T2m ∈ (0,∞) = TS from (5.17), so the complete

orbit y0 7→ (φ− ◦ φ+)m(y0) has 2m− 1 crossing points y1,...,2m−1 ∈ C±;
• if T0 ∈ (Γm+ 1

2
,∞) ⊂ TU then T2m ∈ (−∞, 2v+) ⊂ TC+ from (5.17), and

moreover φ+ ◦ (φ− ◦ φ+)m(y0) ∈ S, so the complete orbit y0 7→ φ+ ◦ (φ− ◦
φ+)m(y0) has 2m crossing points y1,...,2m+1 ∈ C±.

On the bounds between these four cases, T0 maps onto the boundary of TS by (6.3).
If k is even we instead let k = 2m, and the corresponding result is found trivially by
substituting m 7→ m + 1

2 into the cases above. Finally, we have assumed that φ+ is
applied first, and the similarity transformation (5.12) gives the corresponding values
T = 0 and T = Γ(k+1)/2 = v−/G(k+1)/2(πr) when φ− is applied first. In each case the
number of crossings changes between k and k + 1, giving part 1 of the corollary, and
the change takes place either at T = 0 or at T = Γ(k+1)/2 = v±/G(k+1)/2(πr), giving
part 2 of the corollary. �

As a remark, Theorem 3 shows that the singularity is topologically unstable when
v+v− = cos2 π

k+1 for integer k, since the flow maps the boundaries of U exactly
onto to the boundaries of S. The corollary shows that the intervening cases, when
v+v− = cos2 π

r+1 for non-integer r, are topologically stable, since the boundaries of U
map into the interior of S, and the same number of crossings applies to open intervals
of starting points with tangents T0.

7. Examples. To illustrate the theorem, we simulate the normal form system
obtained by substituting (4.2) into (4.1).

In figure 7.1 we take v+ = −1 and v− = −0.7. In the Corollary to Theorem
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3, where we let v+v− = cos2 π
r+1 , we therefore have r = 4.42. Hence 4 < r < 5,

implying that the flow can cross either k = 4 or k + 1 = 5 times between U and S,
corresponding to m = 5/2 in figure 6.2. Two orbits are shown in figure 7.1, with
initial points y′

0 = (−0.81,−0.59) ∈ U and y0 = (−0.16,−0.99) ∈ U , with tangents
T ′
0 ∈ (v+/G3,∞) and T0 ∈ (0, v+/G5/2(arccos

√
v+v−)), which exhibit four and five

crossing respectively. The flow from a point in U can depart the switching manifold
into h > 0 or h < 0, or slide on h = 0; to illustrate the corollary we select only the
former of these, by perturbing the initial points slightly above U with x = 10−5.

y’0
y0

x

z

y

y5

y’6

sliding

U S

C+

C−

T=τ3

Fig. 7.1. The Teixeira singularity with v+v− = 0.7. Two orbits with initial points y0 and y′
0

are shown (dotted and full respectively), winding around from the unstable sliding region U , through
the crossing regions C±, to the stable reaching the sliding region S. The line with tangent T = Γ3 =
−1/G3(arccos

√
0.7) is shown in U . The continuation of the orbits into stable sliding is also shown in S.

In figure 7.2 we take v+ = −1 and v− = −0.998, then in the Corollary to Theorem
3 we have r = 69.2, hence 69 < r < 70, implying that the flow should exhibit
either 69 or 70 crossing between U and S. A single orbit is depicted, with an initial
point y0 = (cos(3π/4), sin(3π/4)), and undergoes 70 crossings between the sliding
regions. (Again the initial point is perturbed slightly above U by giving it an initial
x coordinate of 10−5).

As we increase v+v− further towards unity (simulations not shown), the path of
this orbit remains similar, but its number of crossings tends to infinity, until eventually
a pair of invariant cones are born enclosing the regions U and S, described as the
nonsmooth diabolo bifurcation in [9]. An important point can be made here regarding
the interpretation of the normal form. If we instead simulate a non-normal form
system, perhaps by adding nonlinear terms, the normal form dynamics will still be
found in a sufficiently small neighbourhood of the singularity. If x, y, z, are too large
then the statements of crossing numbers may be inaccurate. In particular in the case
of infinite crossings (Theorem 2(iii)), the variables always become large eventually in
forward or backward time, non-local terms take over to augment the normal form
behaviour, so the phrase ‘infintely many crossing’ may no longer hold.

8. Closing remarks. It has been nearly half a century since Filippov described
how to solve a discontinuous differential equation [5], and half that since his work [6]
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U
S

C+

C−

x

zy

Fig. 7.2. The Teixeira singularity with v+v− = 0.998. A single orbits is shown, winding around the
singularity from U to S, via 70 crossings in the regions C±.

raised the problem of the stability of the two-fold singularity. The case where the
local flow curves towards the switching manifold on both sides, known as the Teixeira
singularity, can now be summarized in Theorems 1 to 3 in section 3. As Filippov
stated in [6], there are infinitely many different topological classes of this singularity.
Within these classes, however, the topology is structurally stable. Only for v+v− . 1,
when v+ and v− are negative, are these classes infinitely crowded, such that a small
perturbation of the system yields a class where the flows rotates a different number
of times around the singularity. The precise manner in which this occurs is left to
future work.

The different local classes of the Teixeira singularity are identified by a single
quantity, called here v+v−, which quantifies the discontinuity in the flow’s direction
at the singularity. The cases are distinguished by the number of crossings that the
flow makes between visits to the sliding regions. For a given set of parameters, if the
number of crossings is finite, then across the whole flow it can differ only by one. As
the parameters vary, bifurcations occurs between different classes in which the two
allowed crossing numbers change incrementally.

These bifurcations occur when v+v− = cos2 π
k+1 and k is an integer, whereupon

the boundaries of unstable and stable sliding are mapped exactly onto each other by
the flow. Clearly this scenario is topologically unstable and, at these values, the role of
higher order terms becomes important to break the degeneracy. For the case k → ∞
this was studied in [3]. For the cases described in this paper, when k is finite, one
expects that higher order terms will perturb the bifurcation curves v+v− = constant,
without altering the dynamics (in particular the range of crossing numbers exhibited
by the flow for nearby parameters) significantly.

Not wishing to extinguish the two-fold’s ability to confound, there remain certain
peculiarities within the classification made in section 3. It has been pointed out by Je-
sus Enrique Achire Quispe at the University of Campinas that, for certain parameter
values, it would seem possible for pairs of orbits to form closed loops if they become
connected by sliding segments in both the unstable region U and the stable region S
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(figure 8.1(ii)). Simulations of the normal form system suggest this may occur only at
v+v− = 1, but this has not been proven conclusively. Also, for certain parameters, the
sliding segment through the singularity can be mapped onto the folds by the crossing
dynamics (figure 8.1(iii)). These non-generic scenarios are topologically unstable, but
they appear to be of no significance for the dynamics along any orbit, and therefore
do not feature in the dynamical classification in the present paper. They do, how-
ever, contribute to an ongoing conundrum of how to define topological equivalence in
nonsmooth systems.

U

S

U

S

(i) generic (ii) non-generic

U

S

(iii) non-generic

Fig. 8.1. (i) a typical stable topology, (ii) a closed loop formed by sliding and non-sliding segments,
(iii) a unique sliding segment through the singularity maps onto a fold. Scenarios (ii)-(iii) represent
unstable topologies but have no critical effect on dynamics.

We have derived results here that apply strictly to the normal form, and therefore
assume that this approximates the flow in a general system in a neighbourhood of a
two-fold singularity. The theory of normal forms, and the coordinate transformations
and topological equivalences used to obtain them, is still at a developmental stage in
nonsmooth systems. We hope that the pragmatic appoach taken here (and in [3, 9]),
of deriving the dynamics of the normal form as a local model, will help guide future
study of equivalence, stability, and genericity, in piecewise smooth dynamical systems.

For the cases of two-fold singularity not considered here, where the dynamics
curves away from the switching manifold on one or both sides, there always exist
directions locally that carry the flow away from the singularity (see for example [3, 6,
13]), and the issue of structural stability is rather more simple. Among the different
forms of two-fold, some cases channel the flow between sliding regions, either from
stable to unstable or vice versa, and others convey the flow around the singularity
without any orbits passing through it. These different cases have a wider role to
play in the emerging theory of global dynamics of nonsmooth flows in three or more
dimensions (see for example [10]), and their study is ongoing.
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Appendix A.

The Lie derivative is a standard tool appearing in most texts on dynamical sys-
tems, however the notation ∂t± used in sections 2 and 3 is non-standard. It is therefore
worth a few remarks.

The notation ∂t± is employed here for two reasons. Firstly, the operators ∂t±
are sufficient to specify both the piecewise-smooth flow, and most singularities of
interest, without having to introduce the vector fields f± explicitly (note that these
do not appear until the normal form analysis of section 4).

Secondly, ∂t± represents a time derivatve. The Lie derivative with respect to some
f is the directional derivative along f , given by the operator f · ∂x. In the language
of dynamical systems, if f is taken to be a velocity field f = dx/dt, then we can
write f · ∂x = (dx/dt) · ∂x = d/dt, so the Lie derivative is just the time derivative
along a flow with velocity f . There are two ways to avoid explicit dependence on
the coordinate system x, either replacing f · ∂x with a symbol Lf (see e.g. [4]), or
by letting the symbol f itself give the Lie derivative when acting on a function, so
fh = f · ∂xh (see e.g. [12, 13]). In fact, it is unecessary to explicitly specify either the
coordinate system x or the vector field f , if one defines the flow by the derivative ‘∂’
with respect to time t taken along it, hence we use the symbol ∂t. More specifically,
in our piecewise-smooth flow we have two operators ∂t± , in regions indexed by ‘±’
denoting the sign of a function h.


